Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,500 Bytes
142a1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import math
import torch.nn as nn
from torch.nn import functional as F
def is_square_of_two(num):
if num <= 0:
return False
return num & (num - 1) == 0
class CnnEncoder(nn.Module):
"""
Simple cnn encoder that encodes a 64x64 image to embeddings
"""
def __init__(self, embedding_size, activation_function="relu"):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.fc = nn.Linear(1024, self.embedding_size)
self.conv1 = nn.Conv2d(3, 32, 4, stride=2)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 128, 4, stride=2)
self.conv4 = nn.Conv2d(128, 256, 4, stride=2)
self.modules = [self.conv1, self.conv2, self.conv3, self.conv4]
def forward(self, observation):
batch_size = observation.shape[0]
hidden = self.act_fn(self.conv1(observation))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
hidden = self.act_fn(self.conv4(hidden))
hidden = self.fc(hidden.view(batch_size, 1024))
return hidden
class CnnDecoder(nn.Module):
"""
Simple Cnn decoder that decodes an embedding to 64x64 images
"""
def __init__(self, embedding_size, activation_function="relu"):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.fc = nn.Linear(embedding_size, 128)
self.conv1 = nn.ConvTranspose2d(128, 128, 5, stride=2)
self.conv2 = nn.ConvTranspose2d(128, 64, 5, stride=2)
self.conv3 = nn.ConvTranspose2d(64, 32, 6, stride=2)
self.conv4 = nn.ConvTranspose2d(32, 3, 6, stride=2)
self.modules = [self.conv1, self.conv2, self.conv3, self.conv4]
def forward(self, embedding):
batch_size = embedding.shape[0]
hidden = self.fc(embedding)
hidden = hidden.view(batch_size, 128, 1, 1)
hidden = self.act_fn(self.conv1(hidden))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
observation = self.conv4(hidden)
return observation
class FullyConvEncoder(nn.Module):
"""
Simple fully convolutional encoder, with 2D input and 2D output
"""
def __init__(
self,
input_shape=(3, 64, 64),
embedding_shape=(8, 16, 16),
activation_function="relu",
init_channels=16,
):
super().__init__()
assert len(input_shape) == 3, "input_shape must be a tuple of length 3"
assert len(embedding_shape) == 3, "embedding_shape must be a tuple of length 3"
assert input_shape[1] == input_shape[2] and is_square_of_two(
input_shape[1]
), "input_shape must be square"
assert (
embedding_shape[1] == embedding_shape[2]
), "embedding_shape must be square"
assert (
input_shape[1] % embedding_shape[1] == 0
), "input_shape must be divisible by embedding_shape"
assert is_square_of_two(init_channels), "init_channels must be a square of 2"
depth = int(math.sqrt(input_shape[1] / embedding_shape[1])) + 1
channels_per_layer = [init_channels * (2**i) for i in range(depth)]
self.act_fn = getattr(F, activation_function)
self.downs = nn.ModuleList([])
self.downs.append(
nn.Conv2d(
input_shape[0],
channels_per_layer[0],
kernel_size=3,
stride=1,
padding=1,
)
)
for i in range(1, depth):
self.downs.append(
nn.Conv2d(
channels_per_layer[i - 1],
channels_per_layer[i],
kernel_size=3,
stride=2,
padding=1,
)
)
# Bottleneck layer
self.downs.append(
nn.Conv2d(
channels_per_layer[-1],
embedding_shape[0],
kernel_size=1,
stride=1,
padding=0,
)
)
def forward(self, observation):
hidden = observation
for layer in self.downs:
hidden = self.act_fn(layer(hidden))
return hidden
class FullyConvDecoder(nn.Module):
"""
Simple fully convolutional decoder, with 2D input and 2D output
"""
def __init__(
self,
embedding_shape=(8, 16, 16),
output_shape=(3, 64, 64),
activation_function="relu",
init_channels=16,
):
super().__init__()
assert len(embedding_shape) == 3, "embedding_shape must be a tuple of length 3"
assert len(output_shape) == 3, "output_shape must be a tuple of length 3"
assert output_shape[1] == output_shape[2] and is_square_of_two(
output_shape[1]
), "output_shape must be square"
assert embedding_shape[1] == embedding_shape[2], "input_shape must be square"
assert (
output_shape[1] % embedding_shape[1] == 0
), "output_shape must be divisible by input_shape"
assert is_square_of_two(init_channels), "init_channels must be a square of 2"
depth = int(math.sqrt(output_shape[1] / embedding_shape[1])) + 1
channels_per_layer = [init_channels * (2**i) for i in range(depth)]
self.act_fn = getattr(F, activation_function)
self.ups = nn.ModuleList([])
self.ups.append(
nn.ConvTranspose2d(
embedding_shape[0],
channels_per_layer[-1],
kernel_size=1,
stride=1,
padding=0,
)
)
for i in range(1, depth):
self.ups.append(
nn.ConvTranspose2d(
channels_per_layer[-i],
channels_per_layer[-i - 1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
)
)
self.output_layer = nn.ConvTranspose2d(
channels_per_layer[0], output_shape[0], kernel_size=3, stride=1, padding=1
)
def forward(self, embedding):
hidden = embedding
for layer in self.ups:
hidden = self.act_fn(layer(hidden))
return self.output_layer(hidden)
|