# Deploying KAI-API with Z.ai Online (Docker) To run **Z.ai** (which requires a full browser) online, you must use a Docker container. The best free option is **Hugging Face Spaces**. ## Option A: Hugging Face Spaces (Recommended - Free) 1. **Create a Space**: - Go to [Hugging Face Spaces](https://huggingface.co/spaces). - Click **Create new Space**. - **Name**: `kai-api-gateway`. - **SDK**: Select **Docker**. - **Space Hardware**: `CPU basic (free)` (2 vCPU, 16GB RAM) is sufficient. - **Visibility**: `Public` or `Private`. 2. **Upload Files**: - You can drag and drop your project files, or use Git. - **Essential files**: `Dockerfile`, `requirements.txt`, `main.py`, `config.py`, `engine.py`, `providers/`, `static/`. *Git Command:* ```bash git remote add space https://huggingface.co/spaces/YOUR_USERNAME/kai-api-gateway git push space main ``` 3. **Wait for Build**: - Hugging Face will build the Docker image (takes ~2-3 mins). - Once "Running", your API is live! - **URL**: `https://YOUR_USERNAME-kai-api-gateway.hf.space` 4. **Access Your App**: - **Dashboard (UI)**: `https://YOUR_USERNAME-kai-api-gateway.hf.space/` - **API Docs (Swagger)**: `https://YOUR_USERNAME-kai-api-gateway.hf.space/docs` - **Admin Panel**: `https://YOUR_USERNAME-kai-api-gateway.hf.space/qazmlp` 5. **Test Z.ai**: - Go to your Dashboard URL. - `/models` should listed `glm-5`. - Chat with `provider: zai` — it will work! ## Option B: Render / Railway / Koyeb 1. Connect your GitHub repo. 2. Select **Docker** as the deployment type. 3. Set the internal port to `7860` (or update CMD in Dockerfile to 8080). 4. Deploy. > **Note on Vercel**: Vercel Serverless Function does NOT support the browser. You can keep your Vercel deployment for lightweight tasks, but use this Docker instance for heavy AI tasks (Z.ai).