Anurag181011 commited on
Commit
155699f
·
1 Parent(s): 5901c31
Files changed (1) hide show
  1. app.py +34 -20
app.py CHANGED
@@ -1,53 +1,67 @@
1
- import gradio as gr
2
  import torch
 
3
  from diffusers import StableDiffusionImg2ImgPipeline
4
  from PIL import Image
5
- import os
6
- # Check and print device status
7
- os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Ensure CUDA is used
 
 
 
8
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
  print(f"Using device: {device}")
10
- print(f"CUDA available: {torch.cuda.is_available()}")
11
 
12
- # Ensure torch is installed correctly
13
  try:
14
  torch.zeros(1).to(device)
15
  print("Torch initialized successfully on", device)
16
  except Exception as e:
17
  print("Torch initialization error:", e)
18
 
19
- # Load the Stable Diffusion model with optimizations
20
  model_id = "nitrosocke/Ghibli-Diffusion"
 
21
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
22
- model_id,
23
- torch_dtype=torch.float32,
 
 
24
  safety_checker=None
25
  ).to(device)
26
 
27
- if device == "cuda":
28
- pipe.to(device)
29
- pipe.enable_model_cpu_offload() # Efficient VRAM usage
30
- pipe.enable_xformers_memory_efficient_attention() # Optimized attention for speed
31
 
32
- def transform_image(input_image: Image.Image) -> Image.Image:
 
 
 
 
 
 
 
 
33
  input_image = input_image.resize((512, 512))
34
- prompt = "ghibli style, cinematic lighting, hand-painted, anime aesthetics"
35
 
36
  output = pipe(
37
  prompt=prompt,
38
  image=input_image,
39
- strength=0.65, # Reduce strength to avoid excessive details
40
- guidance_scale=5.0, # Lowered for faster inference
41
- num_inference_steps=25, # Reduced steps for speed
42
  )
 
43
  return output.images[0]
44
 
45
- # Gradio Interface
46
  demo = gr.Interface(
47
  fn=transform_image,
48
  inputs=gr.Image(type="pil", label="Upload your portrait/photo"),
49
  outputs=gr.Image(type="pil", label="Studio Ghibli Style Output"),
50
- title="Studio Ghibli Style Converter",
51
  description="Upload a portrait or photo to transform it into a Studio Ghibli-style image.",
52
  )
53
 
 
1
+ import os
2
  import torch
3
+ import gradio as gr
4
  from diffusers import StableDiffusionImg2ImgPipeline
5
  from PIL import Image
6
+
7
+ # Force CUDA usage
8
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
9
+ torch.backends.cudnn.benchmark = True
10
+ torch.backends.cuda.matmul.allow_tf32 = True
11
+
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
 
14
 
15
+ # Ensure torch is properly installed
16
  try:
17
  torch.zeros(1).to(device)
18
  print("Torch initialized successfully on", device)
19
  except Exception as e:
20
  print("Torch initialization error:", e)
21
 
22
+ # Load the optimized Stable Diffusion model
23
  model_id = "nitrosocke/Ghibli-Diffusion"
24
+
25
  pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
26
+ model_id,
27
+ torch_dtype=torch.float16,
28
+ use_safetensors=True,
29
+ low_cpu_mem_usage=True,
30
  safety_checker=None
31
  ).to(device)
32
 
33
+ pipe.enable_xformers_memory_efficient_attention()
34
+ pipe.enable_model_cpu_offload()
35
+ pipe.enable_vae_slicing()
36
+ pipe.enable_attention_slicing()
37
 
38
+ # Enhanced prompt for Studio Ghibli-style transformation
39
+ prompt = (
40
+ "Beautiful Studio Ghibli anime-style portrait, breathtaking landscape background, "
41
+ "soft pastel colors, hand-painted texture, cinematic lighting, dreamy atmosphere, "
42
+ "vibrant and rich details, Miyazaki aesthetic, magical realism, watercolor effect, "
43
+ "warm sunlight, stunning composition, high detail, fantasy world."
44
+ )
45
+
46
+ def transform_image(input_image):
47
  input_image = input_image.resize((512, 512))
 
48
 
49
  output = pipe(
50
  prompt=prompt,
51
  image=input_image,
52
+ strength=0.65,
53
+ guidance_scale=4.5,
54
+ num_inference_steps=20,
55
  )
56
+
57
  return output.images[0]
58
 
59
+ # Gradio UI
60
  demo = gr.Interface(
61
  fn=transform_image,
62
  inputs=gr.Image(type="pil", label="Upload your portrait/photo"),
63
  outputs=gr.Image(type="pil", label="Studio Ghibli Style Output"),
64
+ title="Studio Ghibli AI Converter",
65
  description="Upload a portrait or photo to transform it into a Studio Ghibli-style image.",
66
  )
67