Spaces:
Runtime error
Runtime error
Kirili4ik
commited on
Commit
·
21a5dba
1
Parent(s):
5246f84
clean and make 6ep model
Browse files- app.py +18 -136
- util_funcs.py +109 -0
app.py
CHANGED
|
@@ -1,118 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
def get_length_param(text: str, tokenizer) -> str:
|
| 7 |
-
"""Maps text to 1 of 4 buckets based on length after encoding.
|
| 8 |
-
|
| 9 |
-
Parameters
|
| 10 |
-
----------
|
| 11 |
-
text: str
|
| 12 |
-
The text to be given 1 of 4 length parameters.
|
| 13 |
-
|
| 14 |
-
tokenizer: HuggingFace tokenizer
|
| 15 |
-
Tokenizer that used to compute the length of the text after encoding.
|
| 16 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 17 |
-
|
| 18 |
-
Returns
|
| 19 |
-
-------
|
| 20 |
-
len_param: str
|
| 21 |
-
One of four buckets:
|
| 22 |
-
'1' for short, '2' for medium, '3' for long texts and '-' for all others.
|
| 23 |
-
"""
|
| 24 |
-
tokens_count = len(tokenizer.encode(text))
|
| 25 |
-
if tokens_count <= 15:
|
| 26 |
-
len_param = '1'
|
| 27 |
-
elif tokens_count <= 50:
|
| 28 |
-
len_param = '2'
|
| 29 |
-
elif tokens_count <= 256:
|
| 30 |
-
len_param = '3'
|
| 31 |
-
else:
|
| 32 |
-
len_param = '-'
|
| 33 |
-
return len_param
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
|
| 37 |
-
"""Maps text by 1/0 for it to be the person or the machine in the dialogue
|
| 38 |
-
|
| 39 |
-
Parameters
|
| 40 |
-
----------
|
| 41 |
-
text: Dict[..., 'from', ...]
|
| 42 |
-
Dict containing field 'from' with the name of the user who sent the message
|
| 43 |
-
|
| 44 |
-
machine_name_in_chat: str
|
| 45 |
-
Str with the name of the machine - it will be predicted
|
| 46 |
-
"""
|
| 47 |
-
if text['from'] == machine_name_in_chat:
|
| 48 |
-
return '1' # machine
|
| 49 |
-
else:
|
| 50 |
-
return '0' # human
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def build_text_file(data_json: dict, dest_path: str,
|
| 54 |
-
tokenizer, machine_name_in_chat='Кирилл Гельван'):
|
| 55 |
-
"""Create a text file for training in special format for ruDialoGPT-3.
|
| 56 |
-
|
| 57 |
-
Parameters
|
| 58 |
-
----------
|
| 59 |
-
data_json: dict
|
| 60 |
-
Dict containing 'text' (message) and 'from' (user who sent the message)
|
| 61 |
-
|
| 62 |
-
dest_path: str
|
| 63 |
-
String containing path to write data there
|
| 64 |
-
|
| 65 |
-
tokenizer: HuggingFace tokenizer
|
| 66 |
-
Tokenizer that used to compute the length of the text after encoding.
|
| 67 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 68 |
-
"""
|
| 69 |
-
f = open(dest_path, 'w')
|
| 70 |
-
new_data = ''
|
| 71 |
-
for i in range(len(data_json) - 1):
|
| 72 |
-
message, next_message = data_json[i], data_json[i+1]
|
| 73 |
-
if message['text'] == '' or type(message['text']) != str:
|
| 74 |
-
continue
|
| 75 |
-
if next_message['text'] == '' or type(next_message['text']) != str:
|
| 76 |
-
continue
|
| 77 |
-
|
| 78 |
-
user = get_user_param(message, machine_name_in_chat=machine_name_in_chat)
|
| 79 |
-
length = get_length_param(data_json[i+1]['text'], tokenizer)
|
| 80 |
-
message_text = re.sub(r"\n", ". ", message['text'])
|
| 81 |
-
new_data += f"|{user}|{length}|{message_text}{tokenizer.eos_token}" + "\n"
|
| 82 |
-
|
| 83 |
-
f.write(new_data)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def load_dataset(train_path, test_path, tokenizer):
|
| 87 |
-
"""Creates train and test PyTorch datasets and collate_fn using HuggingFace.
|
| 88 |
-
|
| 89 |
-
Parameters
|
| 90 |
-
----------
|
| 91 |
-
train_path: str
|
| 92 |
-
String containing path to train data
|
| 93 |
-
|
| 94 |
-
test_path: str
|
| 95 |
-
String containing path to test data
|
| 96 |
-
|
| 97 |
-
tokenizer: HuggingFace tokenizer
|
| 98 |
-
Tokenizer that used to compute the length of the text after encoding.
|
| 99 |
-
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 100 |
-
"""
|
| 101 |
-
train_dataset = TextDataset(
|
| 102 |
-
tokenizer = tokenizer,
|
| 103 |
-
file_path = train_path,
|
| 104 |
-
block_size = 256)
|
| 105 |
-
|
| 106 |
-
test_dataset = TextDataset(
|
| 107 |
-
tokenizer = tokenizer,
|
| 108 |
-
file_path = test_path,
|
| 109 |
-
block_size = 256)
|
| 110 |
-
|
| 111 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 112 |
-
tokenizer=tokenizer, mlm=False
|
| 113 |
-
)
|
| 114 |
-
return train_dataset, test_dataset, data_collator
|
| 115 |
-
|
| 116 |
|
| 117 |
def chat_function(message, length_of_the_answer, who_is_next, creativity): # model, tokenizer
|
| 118 |
|
|
@@ -138,12 +27,6 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
| 138 |
history = gr.get_state() or []
|
| 139 |
chat_history_ids = torch.zeros((1, 0), dtype=torch.int) if history == [] else torch.tensor(history[-1][2], dtype=torch.long)
|
| 140 |
|
| 141 |
-
######### next_who = input("Who's phrase?\t") #input("H / G?") # Human or GPT
|
| 142 |
-
|
| 143 |
-
# In case Human
|
| 144 |
-
##### if next_who == "H":
|
| 145 |
-
|
| 146 |
-
######## input_user = input("===> Human: ")
|
| 147 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
| 148 |
if len(input_user) != 0:
|
| 149 |
|
|
@@ -156,7 +39,6 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
| 156 |
|
| 157 |
if next_who == "G":
|
| 158 |
|
| 159 |
-
######## next_len = input("Phrase len? 1/2/3/-\t") #input("Exp. len?(-/1/2/3): ")
|
| 160 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
| 161 |
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
|
| 162 |
# append the new user input tokens to the chat history
|
|
@@ -198,45 +80,45 @@ def chat_function(message, length_of_the_answer, who_is_next, creativity): # m
|
|
| 198 |
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
| 199 |
html += "</div>"
|
| 200 |
return html
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
|
| 203 |
|
| 204 |
# Download checkpoint:
|
| 205 |
-
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram"
|
| 206 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 207 |
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
| 208 |
model = model.eval()
|
| 209 |
|
| 210 |
-
|
| 211 |
checkbox_group = gr.inputs.CheckboxGroup(['Kirill', 'Me'], default=['Kirill'], type="value", label=None)
|
| 212 |
-
|
| 213 |
-
inputs = gr.inputs.Textbox(lines=1, label="???")
|
| 214 |
-
outputs = gr.outputs.Textbox(label="Kirill (GPT-2):")
|
| 215 |
title = "Chat with Kirill (in Russian)"
|
| 216 |
description = "Тут можно поболтать со мной. Но вместо меня бот. Оставь message пустым, чтобы Кирилл продолжил говорить. Подбробнее о технике по ссылке внизу."
|
| 217 |
article = "<p style='text-align: center'><a href='https://github.com/Kirili4ik/ruDialoGpt3-finetune-colab'>Github with fine-tuning GPT-2 on your chat</a></p>"
|
| 218 |
examples = [
|
| 219 |
-
["Привет, как дела?", 'medium', 'Kirill', 0.
|
| 220 |
["Сколько тебе лет?", 'medium', 'Kirill', 0.3],
|
| 221 |
]
|
| 222 |
|
| 223 |
-
iface = gr.Interface(chat_function,
|
| 224 |
-
[
|
| 225 |
-
"text",
|
| 226 |
-
gr.inputs.Radio(["short", "medium", "long"], default='medium'),
|
| 227 |
gr.inputs.Radio(["Kirill", "Me"], default='Kirill'),
|
| 228 |
-
gr.inputs.Slider(0, 1, default=0.
|
| 229 |
-
],
|
| 230 |
-
"html",
|
| 231 |
title=title, description=description, article=article, examples=examples,
|
| 232 |
css= """
|
| 233 |
.chatbox {display:flex;flex-direction:column}
|
| 234 |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
|
| 235 |
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
|
| 236 |
.resp_msg {background-color:lightgray;align-self:self-end}
|
| 237 |
-
""",
|
| 238 |
-
allow_screenshot=True,
|
| 239 |
allow_flagging=False
|
| 240 |
)
|
| 241 |
|
| 242 |
-
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from util_funcs import get_length_param
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def chat_function(message, length_of_the_answer, who_is_next, creativity): # model, tokenizer
|
| 7 |
|
|
|
|
| 27 |
history = gr.get_state() or []
|
| 28 |
chat_history_ids = torch.zeros((1, 0), dtype=torch.int) if history == [] else torch.tensor(history[-1][2], dtype=torch.long)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
| 31 |
if len(input_user) != 0:
|
| 32 |
|
|
|
|
| 39 |
|
| 40 |
if next_who == "G":
|
| 41 |
|
|
|
|
| 42 |
# encode the new user input, add parameters and return a tensor in Pytorch
|
| 43 |
new_user_input_ids = tokenizer.encode(f"|1|{next_len}|", return_tensors="pt")
|
| 44 |
# append the new user input tokens to the chat history
|
|
|
|
| 80 |
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
| 81 |
html += "</div>"
|
| 82 |
return html
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
|
| 87 |
|
| 88 |
# Download checkpoint:
|
| 89 |
+
checkpoint = "Kirili4ik/ruDialoGpt3-medium-finetuned-telegram-6ep"
|
| 90 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 91 |
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
| 92 |
model = model.eval()
|
| 93 |
|
| 94 |
+
# Gradio
|
| 95 |
checkbox_group = gr.inputs.CheckboxGroup(['Kirill', 'Me'], default=['Kirill'], type="value", label=None)
|
|
|
|
|
|
|
|
|
|
| 96 |
title = "Chat with Kirill (in Russian)"
|
| 97 |
description = "Тут можно поболтать со мной. Но вместо меня бот. Оставь message пустым, чтобы Кирилл продолжил говорить. Подбробнее о технике по ссылке внизу."
|
| 98 |
article = "<p style='text-align: center'><a href='https://github.com/Kirili4ik/ruDialoGpt3-finetune-colab'>Github with fine-tuning GPT-2 on your chat</a></p>"
|
| 99 |
examples = [
|
| 100 |
+
["Привет, как дела?", 'medium', 'Kirill', 0.5],
|
| 101 |
["Сколько тебе лет?", 'medium', 'Kirill', 0.3],
|
| 102 |
]
|
| 103 |
|
| 104 |
+
iface = gr.Interface(chat_function,
|
| 105 |
+
[
|
| 106 |
+
"text",
|
| 107 |
+
gr.inputs.Radio(["short", "medium", "long"], default='medium'),
|
| 108 |
gr.inputs.Radio(["Kirill", "Me"], default='Kirill'),
|
| 109 |
+
gr.inputs.Slider(0, 1, default=0.5)
|
| 110 |
+
],
|
| 111 |
+
"html",
|
| 112 |
title=title, description=description, article=article, examples=examples,
|
| 113 |
css= """
|
| 114 |
.chatbox {display:flex;flex-direction:column}
|
| 115 |
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
|
| 116 |
.user_msg {background-color:cornflowerblue;color:white;align-self:start}
|
| 117 |
.resp_msg {background-color:lightgray;align-self:self-end}
|
| 118 |
+
""",
|
| 119 |
+
allow_screenshot=True,
|
| 120 |
allow_flagging=False
|
| 121 |
)
|
| 122 |
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
iface.launch()
|
util_funcs.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def get_length_param(text: str, tokenizer) -> str:
|
| 2 |
+
"""Maps text to 1 of 4 buckets based on length after encoding.
|
| 3 |
+
|
| 4 |
+
Parameters
|
| 5 |
+
----------
|
| 6 |
+
text: str
|
| 7 |
+
The text to be given 1 of 4 length parameters.
|
| 8 |
+
|
| 9 |
+
tokenizer: HuggingFace tokenizer
|
| 10 |
+
Tokenizer that used to compute the length of the text after encoding.
|
| 11 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 12 |
+
|
| 13 |
+
Returns
|
| 14 |
+
-------
|
| 15 |
+
len_param: str
|
| 16 |
+
One of four buckets:
|
| 17 |
+
'1' for short, '2' for medium, '3' for long texts and '-' for all others.
|
| 18 |
+
"""
|
| 19 |
+
tokens_count = len(tokenizer.encode(text))
|
| 20 |
+
if tokens_count <= 15:
|
| 21 |
+
len_param = '1'
|
| 22 |
+
elif tokens_count <= 50:
|
| 23 |
+
len_param = '2'
|
| 24 |
+
elif tokens_count <= 256:
|
| 25 |
+
len_param = '3'
|
| 26 |
+
else:
|
| 27 |
+
len_param = '-'
|
| 28 |
+
return len_param
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_user_param(text: dict, machine_name_in_chat: str) -> str:
|
| 32 |
+
"""Maps text by 1/0 for it to be the person or the machine in the dialogue
|
| 33 |
+
|
| 34 |
+
Parameters
|
| 35 |
+
----------
|
| 36 |
+
text: Dict[..., 'from', ...]
|
| 37 |
+
Dict containing field 'from' with the name of the user who sent the message
|
| 38 |
+
|
| 39 |
+
machine_name_in_chat: str
|
| 40 |
+
Str with the name of the machine - it will be predicted
|
| 41 |
+
"""
|
| 42 |
+
if text['from'] == machine_name_in_chat:
|
| 43 |
+
return '1' # machine
|
| 44 |
+
else:
|
| 45 |
+
return '0' # human
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def build_text_file(data_json: dict, dest_path: str,
|
| 49 |
+
tokenizer, machine_name_in_chat='Кирилл Гельван'):
|
| 50 |
+
"""Create a text file for training in special format for ruDialoGPT-3.
|
| 51 |
+
|
| 52 |
+
Parameters
|
| 53 |
+
----------
|
| 54 |
+
data_json: dict
|
| 55 |
+
Dict containing 'text' (message) and 'from' (user who sent the message)
|
| 56 |
+
|
| 57 |
+
dest_path: str
|
| 58 |
+
String containing path to write data there
|
| 59 |
+
|
| 60 |
+
tokenizer: HuggingFace tokenizer
|
| 61 |
+
Tokenizer that used to compute the length of the text after encoding.
|
| 62 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 63 |
+
"""
|
| 64 |
+
f = open(dest_path, 'w')
|
| 65 |
+
new_data = ''
|
| 66 |
+
for i in range(len(data_json) - 1):
|
| 67 |
+
message, next_message = data_json[i], data_json[i+1]
|
| 68 |
+
if message['text'] == '' or type(message['text']) != str:
|
| 69 |
+
continue
|
| 70 |
+
if next_message['text'] == '' or type(next_message['text']) != str:
|
| 71 |
+
continue
|
| 72 |
+
|
| 73 |
+
user = get_user_param(message, machine_name_in_chat=machine_name_in_chat)
|
| 74 |
+
length = get_length_param(data_json[i+1]['text'], tokenizer)
|
| 75 |
+
message_text = re.sub(r"\n", ". ", message['text'])
|
| 76 |
+
new_data += f"|{user}|{length}|{message_text}{tokenizer.eos_token}" + "\n"
|
| 77 |
+
|
| 78 |
+
f.write(new_data)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def load_dataset(train_path, test_path, tokenizer):
|
| 82 |
+
"""Creates train and test PyTorch datasets and collate_fn using HuggingFace.
|
| 83 |
+
|
| 84 |
+
Parameters
|
| 85 |
+
----------
|
| 86 |
+
train_path: str
|
| 87 |
+
String containing path to train data
|
| 88 |
+
|
| 89 |
+
test_path: str
|
| 90 |
+
String containing path to test data
|
| 91 |
+
|
| 92 |
+
tokenizer: HuggingFace tokenizer
|
| 93 |
+
Tokenizer that used to compute the length of the text after encoding.
|
| 94 |
+
For more info ee https://huggingface.co/transformers/main_classes/tokenizer.html
|
| 95 |
+
"""
|
| 96 |
+
train_dataset = TextDataset(
|
| 97 |
+
tokenizer = tokenizer,
|
| 98 |
+
file_path = train_path,
|
| 99 |
+
block_size = 256)
|
| 100 |
+
|
| 101 |
+
test_dataset = TextDataset(
|
| 102 |
+
tokenizer = tokenizer,
|
| 103 |
+
file_path = test_path,
|
| 104 |
+
block_size = 256)
|
| 105 |
+
|
| 106 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 107 |
+
tokenizer=tokenizer, mlm=False
|
| 108 |
+
)
|
| 109 |
+
return train_dataset, test_dataset, data_collator
|