Spaces:
Build error
Build error
Upload 8 files
Browse files- LICENSE +21 -0
- app.py +33 -3
- src/assets/text_content.py +3 -1
- src/trend_utils.py +357 -0
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 clembench
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from src.leaderboard_utils import query_search, get_github_data
|
|
| 9 |
from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models
|
| 10 |
from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view
|
| 11 |
from src.version_utils import get_versions_data
|
|
|
|
| 12 |
|
| 13 |
"""
|
| 14 |
CONSTANTS
|
|
@@ -150,7 +151,7 @@ with hf_app:
|
|
| 150 |
"""
|
| 151 |
####################### THIRD TAB - PLOTS - %PLAYED V/S QUALITY SCORE #######################
|
| 152 |
"""
|
| 153 |
-
with gr.TabItem("
|
| 154 |
"""
|
| 155 |
DropDown Select for Text/Multimodal Leaderboard
|
| 156 |
"""
|
|
@@ -342,9 +343,38 @@ with hf_app:
|
|
| 342 |
)
|
| 343 |
|
| 344 |
"""
|
| 345 |
-
####################### FOURTH TAB -
|
| 346 |
"""
|
| 347 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
with gr.Row():
|
| 349 |
version_select = gr.Dropdown(
|
| 350 |
version_names, label="Select Version 🕹️", value=latest_version
|
|
|
|
| 9 |
from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models
|
| 10 |
from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view
|
| 11 |
from src.version_utils import get_versions_data
|
| 12 |
+
from src.trend_utils import get_text_trend_plot, get_final_trend_plot
|
| 13 |
|
| 14 |
"""
|
| 15 |
CONSTANTS
|
|
|
|
| 151 |
"""
|
| 152 |
####################### THIRD TAB - PLOTS - %PLAYED V/S QUALITY SCORE #######################
|
| 153 |
"""
|
| 154 |
+
with gr.TabItem("📊 Plots", elem_id="plots", id=2):
|
| 155 |
"""
|
| 156 |
DropDown Select for Text/Multimodal Leaderboard
|
| 157 |
"""
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
"""
|
| 346 |
+
####################### FOURTH TAB - TRENDS #######################
|
| 347 |
"""
|
| 348 |
+
with gr.TabItem("📈Trends", elem_id="trends-tab", id=3):
|
| 349 |
+
with gr.Row():
|
| 350 |
+
mkd_text = gr.Markdown("### Commercial v/s Open-Weight models - clemscore over time. The size of the circles represents the scaled value of the parameters of the models. Larger circles indicate higher parameter values.")
|
| 351 |
+
|
| 352 |
+
with gr.Row():
|
| 353 |
+
trend_select = gr.Dropdown(
|
| 354 |
+
choices=["text", "multimodal"],
|
| 355 |
+
value="text",
|
| 356 |
+
label="Select Benchmark 🔍",
|
| 357 |
+
elem_id="value-select-7",
|
| 358 |
+
interactive=True,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
with gr.Row():
|
| 362 |
+
trend_plot = gr.Plot(get_text_trend_plot(),
|
| 363 |
+
label="Trend over time")
|
| 364 |
+
|
| 365 |
+
trend_select.change(
|
| 366 |
+
get_final_trend_plot,
|
| 367 |
+
[trend_select],
|
| 368 |
+
[trend_plot],
|
| 369 |
+
queue=True
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
"""
|
| 375 |
+
####################### FIFTH TAB - VERSIONS AND DETAILS #######################
|
| 376 |
+
"""
|
| 377 |
+
with gr.TabItem("🔄 Versions and Details", elem_id="versions-details-tab", id=4):
|
| 378 |
with gr.Row():
|
| 379 |
version_select = gr.Dropdown(
|
| 380 |
version_names, label="Select Version 🕹️", value=latest_version
|
src/assets/text_content.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
TITLE = """<h1 align="center" id="space-title"> 🏆 CLEM Leaderboard</h1>"""
|
| 2 |
|
| 3 |
REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
|
|
|
|
|
|
|
| 4 |
HF_REPO = "colab-potsdam/clem-leaderboard"
|
| 5 |
|
| 6 |
TEXT_NAME = "🥇 CLEM Leaderboard"
|
|
@@ -13,7 +15,7 @@ The CLEM Leaderboard aims to track, rank and evaluate current cLLMs (chat-optimi
|
|
| 13 |
|
| 14 |
The benchmarking approach is described in [Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents](https://aclanthology.org/2023.emnlp-main.689.pdf).
|
| 15 |
|
| 16 |
-
The multimodal benchmark is described in [
|
| 17 |
|
| 18 |
Source code for benchmarking "clems" is available here: [Clembench](https://github.com/clembench/clembench)
|
| 19 |
|
|
|
|
| 1 |
TITLE = """<h1 align="center" id="space-title"> 🏆 CLEM Leaderboard</h1>"""
|
| 2 |
|
| 3 |
REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
|
| 4 |
+
REGISTRY_URL = "https://raw.githubusercontent.com/kushal-10/clembench/feat/registry/backends/model_registry_updated.json"
|
| 5 |
+
|
| 6 |
HF_REPO = "colab-potsdam/clem-leaderboard"
|
| 7 |
|
| 8 |
TEXT_NAME = "🥇 CLEM Leaderboard"
|
|
|
|
| 15 |
|
| 16 |
The benchmarking approach is described in [Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as Conversational Agents](https://aclanthology.org/2023.emnlp-main.689.pdf).
|
| 17 |
|
| 18 |
+
The multimodal benchmark is described in [Using Game Play to Investigate Multimodal and Conversational Grounding in Large Multimodal Models](https://arxiv.org/abs/2406.14035)
|
| 19 |
|
| 20 |
Source code for benchmarking "clems" is available here: [Clembench](https://github.com/clembench/clembench)
|
| 21 |
|
src/trend_utils.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Fetch Model Registry and clemscores
|
| 2 |
+
import requests
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
from src.assets.text_content import REGISTRY_URL, REPO
|
| 11 |
+
from src.leaderboard_utils import get_github_data
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Fetch Model Registry
|
| 15 |
+
response = requests.get(REGISTRY_URL)
|
| 16 |
+
model_registry_data = response.json()
|
| 17 |
+
model_registry_df = pd.DataFrame(model_registry_data)
|
| 18 |
+
# Custom tick labels
|
| 19 |
+
base_repo = REPO
|
| 20 |
+
json_url = base_repo + "benchmark_runs.json"
|
| 21 |
+
response = requests.get(json_url)
|
| 22 |
+
|
| 23 |
+
# Check if the JSON file request was successful
|
| 24 |
+
if response.status_code != 200:
|
| 25 |
+
print(f"Failed to read JSON file: Status Code: {response.status_code}")
|
| 26 |
+
|
| 27 |
+
json_data = response.json()
|
| 28 |
+
versions = json_data['versions']
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_param_size(params: str) -> float:
|
| 32 |
+
"""Get the size of parameters in a float format.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
params (str): The parameter size as a string (e.g., '1000B', '1T').
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
float: The size of parameters in float.
|
| 39 |
+
"""
|
| 40 |
+
if not params:
|
| 41 |
+
param_size = 0
|
| 42 |
+
else:
|
| 43 |
+
if params[-1] == "B":
|
| 44 |
+
param_size = params[:-1]
|
| 45 |
+
param_size = float(param_size)
|
| 46 |
+
elif params[-1] == "T":
|
| 47 |
+
param_size = params[:-1]
|
| 48 |
+
param_size = float(param_size)
|
| 49 |
+
param_size *= 1000
|
| 50 |
+
else:
|
| 51 |
+
print("Not a valid parameter size")
|
| 52 |
+
|
| 53 |
+
return param_size
|
| 54 |
+
|
| 55 |
+
def date_difference(date_str1: str, date_str2: str) -> int:
|
| 56 |
+
"""Calculate the difference in days between two dates.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
date_str1 (str): The first date as a string in 'YYYY-MM-DD' format.
|
| 60 |
+
date_str2 (str): The second date as a string in 'YYYY-MM-DD' format.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
int: The difference in days between the two dates.
|
| 64 |
+
"""
|
| 65 |
+
date_format = "%Y-%m-%d"
|
| 66 |
+
date1 = datetime.strptime(date_str1, date_format)
|
| 67 |
+
date2 = datetime.strptime(date_str2, date_format)
|
| 68 |
+
return (date1 - date2).days
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def populate_list(df: pd.DataFrame, abs_diff: float) -> list:
|
| 72 |
+
"""Populate a list of models based on clemscore differences.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
df (pd.DataFrame): DataFrame containing model data.
|
| 76 |
+
abs_diff (float): The absolute difference threshold for clemscore.
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
list: A list of model names that meet the criteria.
|
| 80 |
+
"""
|
| 81 |
+
l = [df.iloc[0]['model']]
|
| 82 |
+
prev_clemscore = df.iloc[0]['clemscore']
|
| 83 |
+
prev_date = df.iloc[0]['release_date']
|
| 84 |
+
|
| 85 |
+
for i in range(1, len(df)):
|
| 86 |
+
curr_clemscore = df.iloc[i]['clemscore']
|
| 87 |
+
curr_date = df.iloc[i]['release_date']
|
| 88 |
+
date_diff = date_difference(curr_date, prev_date)
|
| 89 |
+
|
| 90 |
+
if curr_clemscore - prev_clemscore >= abs_diff:
|
| 91 |
+
if date_diff == 0:
|
| 92 |
+
l[-1] = df.iloc[i]['model']
|
| 93 |
+
else:
|
| 94 |
+
l.append(df.iloc[i]['model'])
|
| 95 |
+
|
| 96 |
+
prev_clemscore = curr_clemscore
|
| 97 |
+
prev_date = curr_date
|
| 98 |
+
|
| 99 |
+
# Add the last model if the difference between the last and previous date is greater than 15 days
|
| 100 |
+
last_date = df.iloc[-1]['release_date']
|
| 101 |
+
if date_difference(last_date, prev_date) > 15:
|
| 102 |
+
l.append(df.iloc[-1]['model'])
|
| 103 |
+
|
| 104 |
+
return l
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_models_to_display(result_df: pd.DataFrame, open_diff: float = -0.5, comm_diff: float = -10) -> tuple:
|
| 108 |
+
"""Get models to display based on clemscore differences.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
result_df (pd.DataFrame): DataFrame containing model data.
|
| 112 |
+
open_diff (float, optional): Threshold for open models. Defaults to -0.5.
|
| 113 |
+
comm_diff (float, optional): Threshold for commercial models. Defaults to -10.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
tuple: Two lists of model names (open and commercial).
|
| 117 |
+
"""
|
| 118 |
+
open_model_df = result_df[result_df['open_weight']==True]
|
| 119 |
+
comm_model_df = result_df[result_df['open_weight']==False]
|
| 120 |
+
|
| 121 |
+
open_model_df = open_model_df.sort_values(by='release_date', ascending=True)
|
| 122 |
+
comm_model_df = comm_model_df.sort_values(by='release_date', ascending=True)
|
| 123 |
+
open_models = populate_list(open_model_df, open_diff)
|
| 124 |
+
comm_models = populate_list(comm_model_df, comm_diff)
|
| 125 |
+
return open_models, comm_models
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def get_trend_data(text_dfs: list, model_registry_data: list) -> pd.DataFrame:
|
| 129 |
+
"""Process text data frames to extract model information.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
text_dfs (list): List of DataFrames containing model information.
|
| 133 |
+
model_registry_data (list): List of dictionaries containing model registry data.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
pd.DataFrame: DataFrame containing processed model data.
|
| 137 |
+
"""
|
| 138 |
+
visited = set() # Track models that have been processed
|
| 139 |
+
result_df = pd.DataFrame(columns=['model', 'clemscore', 'open_weight', 'release_date', 'parameters', 'est_flag'])
|
| 140 |
+
|
| 141 |
+
for df in text_dfs:
|
| 142 |
+
for i in range(len(df)):
|
| 143 |
+
model_name = df['Model'].iloc[i]
|
| 144 |
+
if model_name not in visited:
|
| 145 |
+
visited.add(model_name)
|
| 146 |
+
for dict_obj in model_registry_data:
|
| 147 |
+
if dict_obj["model_name"] == model_name:
|
| 148 |
+
if dict_obj["parameters"] == "" :
|
| 149 |
+
params = "1000B"
|
| 150 |
+
est_flag = True
|
| 151 |
+
print(f"EST PARAMS for {model_name}: {params}")
|
| 152 |
+
else:
|
| 153 |
+
params = dict_obj['parameters']
|
| 154 |
+
est_flag = False
|
| 155 |
+
|
| 156 |
+
param_size = get_param_size(params)
|
| 157 |
+
new_data = {'model': model_name, 'clemscore': df['Clemscore'].iloc[i], 'open_weight':dict_obj['open_weight'],
|
| 158 |
+
'release_date': dict_obj['release_date'], 'parameters': param_size, 'est_flag': est_flag}
|
| 159 |
+
result_df.loc[len(result_df)] = new_data
|
| 160 |
+
break
|
| 161 |
+
return result_df # Return the compiled DataFrame
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def get_plot(df: pd.DataFrame, start_date: str = '2023-06-01', end_date: str = '2024-12-30',
|
| 165 |
+
open_diff: float = -0.5, comm_diff: float = -10, benchmark_ticks: dict = {}, data: str = "text") -> go.Figure:
|
| 166 |
+
"""Generate a plot for the given DataFrame.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
df (pd.DataFrame): DataFrame containing model data.
|
| 170 |
+
start_date (str, optional): Start date for filtering. Defaults to '2023-06-01'.
|
| 171 |
+
end_date (str, optional): End date for filtering. Defaults to '2024-12-30'.
|
| 172 |
+
open_diff (float, optional): Threshold for open models. Defaults to -0.5. The threshold is the allowed dip in clemscore for the trendline to be plotted.
|
| 173 |
+
comm_diff (float, optional): Threshold for commercial models. Defaults to -10. The threshold is the allowed dip in clemscore for the trendline to be plotted.
|
| 174 |
+
benchmark_ticks (dict, optional): Custom benchmark ticks for the version dates. Defaults to {}.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
go.Figure: The generated plot.
|
| 178 |
+
"""
|
| 179 |
+
max_clemscore = df['clemscore'].max()
|
| 180 |
+
# Convert 'release_date' to datetime
|
| 181 |
+
df['Release date'] = pd.to_datetime(df['release_date'], format='ISO8601')
|
| 182 |
+
# Filter out data before April 2023
|
| 183 |
+
df = df[df['Release date'] >= pd.to_datetime(start_date)]
|
| 184 |
+
open_model_list, comm_model_list = get_models_to_display(df, open_diff, comm_diff)
|
| 185 |
+
models_to_display = open_model_list + comm_model_list
|
| 186 |
+
|
| 187 |
+
# Create a column to indicate if the model should be labeled
|
| 188 |
+
df['label_model'] = df['model'].apply(lambda x: x if x in models_to_display else "")
|
| 189 |
+
# Add an identifier column to each DataFrame
|
| 190 |
+
df['Model Type'] = df['open_weight'].map({True: 'Open-Weight', False: 'Commercial'})
|
| 191 |
+
|
| 192 |
+
marker_size = df['parameters'].apply(lambda x: np.sqrt(x) if x > 0 else np.sqrt(200)).astype(float) # Arbitrary
|
| 193 |
+
marker_symbol = df['parameters'].apply(lambda x: 'circle' if x > 0 else 'circle-open')
|
| 194 |
+
|
| 195 |
+
open_color = 'red'
|
| 196 |
+
comm_color = 'blue'
|
| 197 |
+
|
| 198 |
+
# Create the scatter plot
|
| 199 |
+
fig = px.scatter(df,
|
| 200 |
+
x="Release date",
|
| 201 |
+
y="clemscore",
|
| 202 |
+
color="Model Type", # Differentiates the datasets by color
|
| 203 |
+
text="label_model", # Adds text labels from the 'label_model' column
|
| 204 |
+
hover_name="model",
|
| 205 |
+
size=marker_size,
|
| 206 |
+
size_max=40, # Max size of the circles
|
| 207 |
+
symbol=marker_symbol,
|
| 208 |
+
symbol_sequence=['circle'],
|
| 209 |
+
template="plotly_white")
|
| 210 |
+
# title=f"Commercial v/s Open-Weight models for {data} benchmark - clemscore over time. The size of the circles represents the scaled value of the parameters of the models. Larger circles indicate higher parameter values.")
|
| 211 |
+
|
| 212 |
+
# Sort dataframes for line plotting
|
| 213 |
+
df_open = df[df['model'].isin(open_model_list)].sort_values(by='Release date')
|
| 214 |
+
df_commercial = df[df['model'].isin(comm_model_list)].sort_values(by='Release date')
|
| 215 |
+
|
| 216 |
+
## Custom tics for x axis
|
| 217 |
+
benchmark_tickvals = list(pd.to_datetime(list(benchmark_ticks.keys())))
|
| 218 |
+
# Define the start and end dates
|
| 219 |
+
start_date = pd.to_datetime(start_date)
|
| 220 |
+
end_date = pd.to_datetime(end_date)
|
| 221 |
+
# Generate ticks every two months
|
| 222 |
+
date_range = pd.date_range(start=start_date, end=end_date, freq='2MS') # '2MS' stands for 2 Months Start frequency
|
| 223 |
+
# Create labels for these ticks
|
| 224 |
+
custom_ticks = {date: date.strftime('%b %Y') for date in date_range}
|
| 225 |
+
|
| 226 |
+
combined_ticks = {}
|
| 227 |
+
for key in benchmark_ticks:
|
| 228 |
+
if key not in combined_ticks:
|
| 229 |
+
combined_ticks[key] = benchmark_ticks[key]
|
| 230 |
+
for key in custom_ticks:
|
| 231 |
+
if key not in combined_ticks:
|
| 232 |
+
combined_ticks[key] = custom_ticks[key]
|
| 233 |
+
combined_tickvals = list(combined_ticks.keys())
|
| 234 |
+
combined_ticktext = list(combined_ticks.values())
|
| 235 |
+
|
| 236 |
+
# Plot Benchmark Ticks with Vertical Dotted Lines
|
| 237 |
+
for date in benchmark_tickvals:
|
| 238 |
+
fig.add_shape(
|
| 239 |
+
go.layout.Shape(
|
| 240 |
+
type='line',
|
| 241 |
+
x0=date,
|
| 242 |
+
x1=date,
|
| 243 |
+
y0=0,
|
| 244 |
+
y1=1,
|
| 245 |
+
yref='paper',
|
| 246 |
+
line=dict(color='#A9A9A9', dash='dash')
|
| 247 |
+
)
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Update x-axis with combined ticks
|
| 251 |
+
fig.update_xaxes(
|
| 252 |
+
tickvals=combined_tickvals,
|
| 253 |
+
ticktext=combined_ticktext,
|
| 254 |
+
tickangle=0
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Remove old legend entries
|
| 258 |
+
for trace in fig.data:
|
| 259 |
+
trace.showlegend = False
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# Add lines connecting the points for open models
|
| 263 |
+
fig.add_trace(go.Scatter(x=df_open['Release date'], y=df_open['clemscore'],
|
| 264 |
+
mode='lines+markers', name='Open Models Trendline',
|
| 265 |
+
line=dict(color=open_color), showlegend=False))
|
| 266 |
+
|
| 267 |
+
# Add lines connecting the points for commercial models
|
| 268 |
+
fig.add_trace(go.Scatter(x=df_commercial['Release date'], y=df_commercial['clemscore'],
|
| 269 |
+
mode='lines+markers', name='Commercial Models Trendline',
|
| 270 |
+
line=dict(color=comm_color), showlegend=False))
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# Update layout to ensure text labels are visible
|
| 274 |
+
fig.update_traces(textposition='top center')
|
| 275 |
+
fig.update_yaxes(range=[0, max_clemscore+10])
|
| 276 |
+
|
| 277 |
+
# Update the x-axis title
|
| 278 |
+
fig.update_layout(width=1400, height=1000,
|
| 279 |
+
xaxis_title='Release dates of models and clembench versions' # Set your desired x-axis title here
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Add custom legend
|
| 283 |
+
fig.add_trace(go.Scatter(
|
| 284 |
+
x=[None], # X coordinate for the legend entry
|
| 285 |
+
y=[None], # Y coordinate for the legend entry
|
| 286 |
+
mode='markers',
|
| 287 |
+
marker=dict(symbol='circle', color=open_color),
|
| 288 |
+
legendgroup='marker',
|
| 289 |
+
showlegend=True,
|
| 290 |
+
name='Open-Weight Models'
|
| 291 |
+
))
|
| 292 |
+
|
| 293 |
+
fig.add_trace(go.Scatter(
|
| 294 |
+
x=[None], # X coordinate for the legend entry
|
| 295 |
+
y=[None], # Y coordinate for the legend entry
|
| 296 |
+
mode='markers',
|
| 297 |
+
marker=dict(symbol='circle', color=comm_color),
|
| 298 |
+
legendgroup='marker',
|
| 299 |
+
showlegend=True,
|
| 300 |
+
name='Commercial Models'
|
| 301 |
+
))
|
| 302 |
+
|
| 303 |
+
return fig
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def get_text_trend_plot() -> go.Figure:
|
| 308 |
+
"""Get the trend plot for text models.
|
| 309 |
+
|
| 310 |
+
Returns:
|
| 311 |
+
go.Figure: The generated trend plot for text models.
|
| 312 |
+
"""
|
| 313 |
+
text_dfs = get_github_data()['text']
|
| 314 |
+
result_df = get_trend_data(text_dfs, model_registry_data)
|
| 315 |
+
df = result_df
|
| 316 |
+
|
| 317 |
+
benchmark_ticks = {}
|
| 318 |
+
for ver in versions:
|
| 319 |
+
benchmark_ticks[pd.to_datetime(ver['date'])] = ver['version']
|
| 320 |
+
|
| 321 |
+
return get_plot(df, start_date='2023-06-01', end_date=datetime.now().strftime('%Y-%m-%d'), open_diff=-0.5, comm_diff=-5, benchmark_ticks=benchmark_ticks)
|
| 322 |
+
|
| 323 |
+
def get_mm_trend_plot() -> go.Figure:
|
| 324 |
+
"""Get the trend plot for multimodal models.
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
go.Figure: The generated trend plot for multimodal models.
|
| 328 |
+
"""
|
| 329 |
+
text_dfs = get_github_data()['multimodal']
|
| 330 |
+
result_df = get_trend_data(text_dfs, model_registry_data)
|
| 331 |
+
df = result_df
|
| 332 |
+
|
| 333 |
+
benchmark_ticks = {}
|
| 334 |
+
for ver in versions:
|
| 335 |
+
if 'multimodal' in ver['version']:
|
| 336 |
+
ver['version'] = ver['version'].replace('_multimodal', '')
|
| 337 |
+
benchmark_ticks[pd.to_datetime(ver['date'])] = ver['version']
|
| 338 |
+
|
| 339 |
+
return get_plot(df, start_date='2023-06-01', end_date=datetime.now().strftime('%Y-%m-%d'), open_diff=-0.5, comm_diff=-5, benchmark_ticks=benchmark_ticks, data="text")
|
| 340 |
+
|
| 341 |
+
def get_final_trend_plot(benchmark: str = "text") -> go.Figure:
|
| 342 |
+
"""Get the final trend plot for all models.
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
go.Figure: The generated trend plot for selected benchmark.
|
| 346 |
+
"""
|
| 347 |
+
if benchmark == "text":
|
| 348 |
+
return get_text_trend_plot()
|
| 349 |
+
elif benchmark == "multimodal":
|
| 350 |
+
return get_mm_trend_plot()
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
if __name__ == "__main__":
|
| 354 |
+
fig = get_text_trend_plot()
|
| 355 |
+
fig.show()
|
| 356 |
+
fig = get_mm_trend_plot()
|
| 357 |
+
fig.show()
|