Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,9 @@ import torch
|
|
| 7 |
import numpy as np
|
| 8 |
import gradio as gr
|
| 9 |
import subprocess
|
|
|
|
| 10 |
import requests
|
|
|
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
from video_depth_anything.video_depth import VideoDepthAnything
|
| 13 |
from utils.dc_utils import read_video_frames, save_video
|
|
@@ -19,20 +21,27 @@ os.environ["HF_HOME"] = "/tmp/huggingface"
|
|
| 19 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
|
| 20 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 21 |
|
| 22 |
-
# Patch Gradio schema bug
|
| 23 |
def patch_gradio_utils():
|
| 24 |
try:
|
| 25 |
from gradio_client import utils
|
| 26 |
original_get_type = utils.get_type
|
|
|
|
| 27 |
def patched_get_type(schema):
|
| 28 |
-
if isinstance(schema, bool):
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
return original_get_type(schema)
|
|
|
|
| 31 |
utils.get_type = patched_get_type
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
patch_gradio_utils()
|
| 34 |
|
| 35 |
-
# Load BLIP
|
| 36 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 37 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cpu")
|
| 38 |
|
|
@@ -43,103 +52,116 @@ def generate_blip_name(frame: np.ndarray) -> str:
|
|
| 43 |
caption = blip_processor.decode(out[0], skip_special_tokens=True).lower()
|
| 44 |
stopwords = {"a", "an", "the", "in", "on", "at", "with", "by", "of", "for", "under", "through", "and", "is"}
|
| 45 |
words = [w for w in caption.split() if w not in stopwords and w.isalpha()]
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
# Load depth model
|
| 49 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
video_depth_anything.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
|
| 53 |
video_depth_anything = video_depth_anything.to(DEVICE).eval()
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
def download_video_from_url(
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
#
|
| 72 |
-
def
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
if
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
frames, _ = read_video_frames(path, 999, -1, 480)
|
| 86 |
-
frame = frames[len(frames)//2]
|
| 87 |
-
blip = generate_blip_name(frame)
|
| 88 |
-
return blip
|
| 89 |
-
|
| 90 |
-
# Main process
|
| 91 |
-
|
| 92 |
-
def infer_video_depth_from_source(upload_video, video_url, custom_name, use_blip,
|
| 93 |
-
max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur):
|
| 94 |
-
input_path = upload_video or download_video_from_url(video_url)
|
| 95 |
-
base_name = os.path.splitext(os.path.basename(input_path))[0]
|
| 96 |
if custom_name:
|
| 97 |
base_name = custom_name.strip().replace(" ", "_")[:30]
|
| 98 |
elif use_blip:
|
| 99 |
frames, _ = read_video_frames(input_path, 999, -1, 480)
|
| 100 |
-
frame = frames[len(frames)//2]
|
| 101 |
base_name = generate_blip_name(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
output_dir = "./outputs"
|
| 103 |
os.makedirs(output_dir, exist_ok=True)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
frames, target_fps = read_video_frames(input_path, max_len, target_fps, max_res)
|
| 108 |
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=518, device=DEVICE)
|
| 109 |
-
save_video(depths,
|
| 110 |
|
| 111 |
if stitch:
|
| 112 |
full_frames, _ = read_video_frames(input_path, max_len, target_fps, max_res=-1)
|
| 113 |
d_min, d_max = depths.min(), depths.max()
|
| 114 |
stitched_frames = []
|
|
|
|
| 115 |
for i in range(min(len(full_frames), len(depths))):
|
| 116 |
rgb = full_frames[i]
|
| 117 |
depth = ((depths[i] - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
| 118 |
if grayscale:
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
else:
|
| 125 |
import matplotlib
|
| 126 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
| 127 |
depth_vis = (cmap(depth / 255.0)[..., :3] * 255).astype(np.uint8)
|
| 128 |
if blur > 0:
|
| 129 |
-
|
| 130 |
-
depth_vis = cv2.GaussianBlur(depth_vis, (
|
| 131 |
depth_resized = cv2.resize(depth_vis, (rgb.shape[1], rgb.shape[0]))
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
| 136 |
-
cmd = ["ffmpeg", "-y", "-i", stitched_path, "-i", input_path, "-c:v", "copy", "-c:a", "aac",
|
| 137 |
-
"-map", "0:v:0", "-map", "1:a:0?", "-shortest", temp_audio]
|
| 138 |
-
subprocess.run(cmd)
|
| 139 |
-
os.replace(temp_audio, stitched_path)
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Gradio UI
|
| 145 |
with gr.Blocks(analytics_enabled=False, css="""
|
|
@@ -152,7 +174,8 @@ with gr.Blocks(analytics_enabled=False, css="""
|
|
| 152 |
""") as demo:
|
| 153 |
|
| 154 |
gr.Markdown("# Video Depth Anything + RGBD sbs output")
|
| 155 |
-
gr.Markdown("Upload a video or paste a URL to generate RGBD output.
|
|
|
|
| 156 |
|
| 157 |
with gr.Row(equal_height=True):
|
| 158 |
upload_video = gr.Video(label="Upload Video", height=360, scale=1)
|
|
@@ -160,14 +183,40 @@ with gr.Blocks(analytics_enabled=False, css="""
|
|
| 160 |
rgbd_out = gr.Video(label="RGBD Output", interactive=False, autoplay=True, show_share_button=True, height=360, scale=2)
|
| 161 |
|
| 162 |
with gr.Row():
|
| 163 |
-
video_url = gr.Textbox(label="Paste MJ video URL", scale=3)
|
| 164 |
use_blip = gr.Checkbox(label="Use BLIP for automatic file name", value=True, scale=1)
|
| 165 |
blip_name_display = gr.Textbox(label="BLIP file name", interactive=False, scale=2)
|
| 166 |
custom_name = gr.Textbox(label="Custom file name", scale=3)
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
with gr.Accordion("Advanced Settings", open=False):
|
| 173 |
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
|
|
@@ -179,10 +228,11 @@ with gr.Blocks(analytics_enabled=False, css="""
|
|
| 179 |
blur = gr.Slider(label="Blur (for edge smoothing)", minimum=0, maximum=1, value=0.3, step=0.01)
|
| 180 |
|
| 181 |
run_btn = gr.Button("Generate")
|
|
|
|
| 182 |
run_btn.click(
|
| 183 |
fn=infer_video_depth_from_source,
|
| 184 |
inputs=[upload_video, video_url, custom_name, use_blip, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur],
|
| 185 |
-
outputs=[depth_out, rgbd_out
|
| 186 |
)
|
| 187 |
|
| 188 |
demo.queue()
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
import gradio as gr
|
| 9 |
import subprocess
|
| 10 |
+
import urllib.request
|
| 11 |
import requests
|
| 12 |
+
from urllib.parse import urlparse
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
from video_depth_anything.video_depth import VideoDepthAnything
|
| 15 |
from utils.dc_utils import read_video_frames, save_video
|
|
|
|
| 21 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
|
| 22 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 23 |
|
| 24 |
+
# Patch for Gradio schema bug
|
| 25 |
def patch_gradio_utils():
|
| 26 |
try:
|
| 27 |
from gradio_client import utils
|
| 28 |
original_get_type = utils.get_type
|
| 29 |
+
|
| 30 |
def patched_get_type(schema):
|
| 31 |
+
if isinstance(schema, bool):
|
| 32 |
+
return "boolean"
|
| 33 |
+
if not isinstance(schema, dict):
|
| 34 |
+
return "any"
|
| 35 |
return original_get_type(schema)
|
| 36 |
+
|
| 37 |
utils.get_type = patched_get_type
|
| 38 |
+
print("Successfully patched Gradio utils.get_type")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Could not patch Gradio utils: {e}")
|
| 41 |
+
|
| 42 |
patch_gradio_utils()
|
| 43 |
|
| 44 |
+
# Load BLIP model
|
| 45 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 46 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cpu")
|
| 47 |
|
|
|
|
| 52 |
caption = blip_processor.decode(out[0], skip_special_tokens=True).lower()
|
| 53 |
stopwords = {"a", "an", "the", "in", "on", "at", "with", "by", "of", "for", "under", "through", "and", "is"}
|
| 54 |
words = [w for w in caption.split() if w not in stopwords and w.isalpha()]
|
| 55 |
+
trimmed = "_".join(words[:3])
|
| 56 |
+
return trimmed[:30]
|
| 57 |
|
| 58 |
# Load depth model
|
| 59 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 60 |
+
encoder = 'vitl'
|
| 61 |
+
model_name = 'Large'
|
| 62 |
+
model_configs = {
|
| 63 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 64 |
+
}
|
| 65 |
+
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
|
| 66 |
+
ckpt_path = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
|
| 67 |
+
filename=f"video_depth_anything_{encoder}.pth",
|
| 68 |
+
cache_dir="/tmp/huggingface")
|
| 69 |
video_depth_anything.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
|
| 70 |
video_depth_anything = video_depth_anything.to(DEVICE).eval()
|
| 71 |
|
| 72 |
+
# MJ proxy download
|
| 73 |
+
def download_video_from_url(original_url):
|
| 74 |
+
try:
|
| 75 |
+
proxy_base = "https://9cee417c-5874-4e53-939a-52ad3f6f2f30-00-16i6nbwyeqga.picard.replit.dev/"
|
| 76 |
+
proxy_url = f"{proxy_base}?url={original_url}"
|
| 77 |
+
temp_path = "temp_video.mp4"
|
| 78 |
+
with requests.get(proxy_url, stream=True, timeout=20) as response:
|
| 79 |
+
response.raise_for_status()
|
| 80 |
+
with open(temp_path, "wb") as f:
|
| 81 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 82 |
+
if chunk:
|
| 83 |
+
f.write(chunk)
|
| 84 |
+
return temp_path
|
| 85 |
+
except Exception as e:
|
| 86 |
+
raise RuntimeError(f"Proxy download failed: {e}")
|
| 87 |
+
|
| 88 |
+
# Inference
|
| 89 |
+
def infer_video_depth_from_source(upload_video, video_url, custom_name, use_blip, *args):
|
| 90 |
+
max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur = args
|
| 91 |
+
|
| 92 |
+
if upload_video:
|
| 93 |
+
input_path = upload_video
|
| 94 |
+
base_name = os.path.splitext(os.path.basename(input_path))[0]
|
| 95 |
+
elif video_url:
|
| 96 |
+
input_path = download_video_from_url(video_url)
|
| 97 |
+
base_name = os.path.splitext(os.path.basename(input_path))[0]
|
| 98 |
+
else:
|
| 99 |
+
raise ValueError("No video source provided.")
|
| 100 |
+
|
| 101 |
+
blip_name = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
if custom_name:
|
| 103 |
base_name = custom_name.strip().replace(" ", "_")[:30]
|
| 104 |
elif use_blip:
|
| 105 |
frames, _ = read_video_frames(input_path, 999, -1, 480)
|
| 106 |
+
frame = frames[len(frames) // 2]
|
| 107 |
base_name = generate_blip_name(frame)
|
| 108 |
+
blip_name = base_name
|
| 109 |
+
else:
|
| 110 |
+
base_name = os.path.splitext(os.path.basename(input_path))[0]
|
| 111 |
+
|
| 112 |
output_dir = "./outputs"
|
| 113 |
os.makedirs(output_dir, exist_ok=True)
|
| 114 |
|
| 115 |
+
stitched_video_path = os.path.join(output_dir, base_name + "_RGBD.mp4")
|
| 116 |
+
vis_video_path = os.path.join(output_dir, base_name + "_vis.mp4")
|
| 117 |
+
|
| 118 |
frames, target_fps = read_video_frames(input_path, max_len, target_fps, max_res)
|
| 119 |
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=518, device=DEVICE)
|
| 120 |
+
save_video(depths, vis_video_path, fps=fps, is_depths=True)
|
| 121 |
|
| 122 |
if stitch:
|
| 123 |
full_frames, _ = read_video_frames(input_path, max_len, target_fps, max_res=-1)
|
| 124 |
d_min, d_max = depths.min(), depths.max()
|
| 125 |
stitched_frames = []
|
| 126 |
+
|
| 127 |
for i in range(min(len(full_frames), len(depths))):
|
| 128 |
rgb = full_frames[i]
|
| 129 |
depth = ((depths[i] - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
| 130 |
if grayscale:
|
| 131 |
+
if convert_from_color:
|
| 132 |
+
import matplotlib
|
| 133 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
| 134 |
+
depth_color = (cmap(depth / 255.0)[..., :3] * 255).astype(np.uint8)
|
| 135 |
+
gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
| 136 |
+
depth_vis = np.stack([gray]*3, axis=-1)
|
| 137 |
+
else:
|
| 138 |
+
depth_vis = np.stack([depth]*3, axis=-1)
|
| 139 |
else:
|
| 140 |
import matplotlib
|
| 141 |
cmap = matplotlib.colormaps.get_cmap("inferno")
|
| 142 |
depth_vis = (cmap(depth / 255.0)[..., :3] * 255).astype(np.uint8)
|
| 143 |
if blur > 0:
|
| 144 |
+
kernel = int(blur * 20) * 2 + 1
|
| 145 |
+
depth_vis = cv2.GaussianBlur(depth_vis, (kernel, kernel), 0)
|
| 146 |
depth_resized = cv2.resize(depth_vis, (rgb.shape[1], rgb.shape[0]))
|
| 147 |
+
stitched = cv2.hconcat([rgb, depth_resized])
|
| 148 |
+
stitched_frames.append(stitched)
|
| 149 |
|
| 150 |
+
save_video(np.array(stitched_frames), stitched_video_path, fps=fps)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
| 153 |
+
cmd = [
|
| 154 |
+
"ffmpeg", "-y", "-i", stitched_video_path, "-i", input_path,
|
| 155 |
+
"-c:v", "copy", "-c:a", "aac", "-map", "0:v:0", "-map", "1:a:0?",
|
| 156 |
+
"-shortest", temp_audio_path
|
| 157 |
+
]
|
| 158 |
+
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 159 |
+
os.replace(temp_audio_path, stitched_video_path)
|
| 160 |
+
|
| 161 |
+
gc.collect()
|
| 162 |
+
torch.cuda.empty_cache()
|
| 163 |
+
|
| 164 |
+
return vis_video_path, stitched_video_path
|
| 165 |
|
| 166 |
# Gradio UI
|
| 167 |
with gr.Blocks(analytics_enabled=False, css="""
|
|
|
|
| 174 |
""") as demo:
|
| 175 |
|
| 176 |
gr.Markdown("# Video Depth Anything + RGBD sbs output")
|
| 177 |
+
gr.Markdown("Upload a video or paste a URL to generate RGBD output.
|
| 178 |
+
[Project Page](https://videodepthanything.github.io/)")
|
| 179 |
|
| 180 |
with gr.Row(equal_height=True):
|
| 181 |
upload_video = gr.Video(label="Upload Video", height=360, scale=1)
|
|
|
|
| 183 |
rgbd_out = gr.Video(label="RGBD Output", interactive=False, autoplay=True, show_share_button=True, height=360, scale=2)
|
| 184 |
|
| 185 |
with gr.Row():
|
| 186 |
+
video_url = gr.Textbox(label="Paste MJ video URL (experimental)", scale=3)
|
| 187 |
use_blip = gr.Checkbox(label="Use BLIP for automatic file name", value=True, scale=1)
|
| 188 |
blip_name_display = gr.Textbox(label="BLIP file name", interactive=False, scale=2)
|
| 189 |
custom_name = gr.Textbox(label="Custom file name", scale=3)
|
| 190 |
|
| 191 |
+
# Neue Trigger
|
| 192 |
+
def handle_mj_url(url, use_blip):
|
| 193 |
+
if not url.strip():
|
| 194 |
+
return None, ""
|
| 195 |
+
try:
|
| 196 |
+
temp_path = download_video_from_url(url)
|
| 197 |
+
frames, _ = read_video_frames(temp_path, 999, -1, 480)
|
| 198 |
+
blip = generate_blip_name(frames[len(frames) // 2]) if use_blip else ""
|
| 199 |
+
return temp_path, blip
|
| 200 |
+
except Exception as e:
|
| 201 |
+
return None, f"Download error: {e}"
|
| 202 |
+
|
| 203 |
+
video_url.change(
|
| 204 |
+
fn=handle_mj_url,
|
| 205 |
+
inputs=[video_url, use_blip],
|
| 206 |
+
outputs=[upload_video, blip_name_display]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
def handle_upload(path, use_blip):
|
| 210 |
+
if not path or not use_blip:
|
| 211 |
+
return ""
|
| 212 |
+
frames, _ = read_video_frames(path, 999, -1, 480)
|
| 213 |
+
return generate_blip_name(frames[len(frames) // 2])
|
| 214 |
+
|
| 215 |
+
upload_video.change(
|
| 216 |
+
fn=handle_upload,
|
| 217 |
+
inputs=[upload_video, use_blip],
|
| 218 |
+
outputs=[blip_name_display]
|
| 219 |
+
)
|
| 220 |
|
| 221 |
with gr.Accordion("Advanced Settings", open=False):
|
| 222 |
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
|
|
|
|
| 228 |
blur = gr.Slider(label="Blur (for edge smoothing)", minimum=0, maximum=1, value=0.3, step=0.01)
|
| 229 |
|
| 230 |
run_btn = gr.Button("Generate")
|
| 231 |
+
|
| 232 |
run_btn.click(
|
| 233 |
fn=infer_video_depth_from_source,
|
| 234 |
inputs=[upload_video, video_url, custom_name, use_blip, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur],
|
| 235 |
+
outputs=[depth_out, rgbd_out]
|
| 236 |
)
|
| 237 |
|
| 238 |
demo.queue()
|