Spaces:
Sleeping
Sleeping
Commit
·
e78d617
0
Parent(s):
Initial Commit
Browse files- README.md +10 -0
- app.py +586 -0
- model/analyzer.py +245 -0
- requirements.txt +11 -0
- script_search_api.py +279 -0
README.md
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: TREAT-EXAONE
|
| 3 |
+
emoji: 🥤
|
| 4 |
+
colorFrom: amber
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "5.11.0"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
---
|
app.py
ADDED
|
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from model.analyzer import analyze_content
|
| 3 |
+
import asyncio
|
| 4 |
+
import time
|
| 5 |
+
import httpx
|
| 6 |
+
import subprocess
|
| 7 |
+
import atexit
|
| 8 |
+
|
| 9 |
+
# Start the API server
|
| 10 |
+
def start_api_server():
|
| 11 |
+
# Start uvicorn in a subprocess
|
| 12 |
+
process = subprocess.Popen(["uvicorn", "script_search_api:app", "--reload"])
|
| 13 |
+
return process
|
| 14 |
+
|
| 15 |
+
# Stop the API server
|
| 16 |
+
def stop_api_server(process):
|
| 17 |
+
process.terminate()
|
| 18 |
+
|
| 19 |
+
# Register the exit handler
|
| 20 |
+
api_process = start_api_server()
|
| 21 |
+
atexit.register(stop_api_server, api_process)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
custom_css = """
|
| 25 |
+
* {
|
| 26 |
+
font-family: 'Inter', system-ui, sans-serif;
|
| 27 |
+
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
.gradio-container {
|
| 31 |
+
background: #0a0a0f !important;
|
| 32 |
+
color: #fff !important;
|
| 33 |
+
min-height: 100vh;
|
| 34 |
+
position: relative;
|
| 35 |
+
overflow: hidden;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
/* Animated Background */
|
| 39 |
+
.gradio-container::before {
|
| 40 |
+
content: '';
|
| 41 |
+
position: fixed;
|
| 42 |
+
top: 0;
|
| 43 |
+
left: 0;
|
| 44 |
+
right: 0;
|
| 45 |
+
bottom: 0;
|
| 46 |
+
background:
|
| 47 |
+
linear-gradient(125deg,
|
| 48 |
+
#0a0a0f 0%,
|
| 49 |
+
rgba(99, 102, 241, 0.05) 30%,
|
| 50 |
+
rgba(99, 102, 241, 0.1) 50%,
|
| 51 |
+
rgba(99, 102, 241, 0.05) 70%,
|
| 52 |
+
#0a0a0f 100%);
|
| 53 |
+
animation: gradientMove 15s ease infinite;
|
| 54 |
+
background-size: 400% 400%;
|
| 55 |
+
z-index: 0;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
/* Floating Particles */
|
| 59 |
+
.gradio-container::after {
|
| 60 |
+
content: '';
|
| 61 |
+
position: fixed;
|
| 62 |
+
top: 0;
|
| 63 |
+
left: 0;
|
| 64 |
+
width: 100%;
|
| 65 |
+
height: 100%;
|
| 66 |
+
background: radial-gradient(circle at center, transparent 0%, #0a0a0f 70%),
|
| 67 |
+
url("data:image/svg+xml,%3Csvg width='100' height='100' viewBox='0 0 100 100' xmlns='http://www.w3.org/2000/svg'%3E%3Ccircle cx='50' cy='50' r='1' fill='rgba(99, 102, 241, 0.15)'/%3E%3C/svg%3E");
|
| 68 |
+
opacity: 0.5;
|
| 69 |
+
animation: floatingParticles 20s linear infinite;
|
| 70 |
+
z-index: 1;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
/* Futuristic Header */
|
| 74 |
+
.treat-title {
|
| 75 |
+
text-align: center;
|
| 76 |
+
padding: 3rem 1rem;
|
| 77 |
+
position: relative;
|
| 78 |
+
overflow: hidden;
|
| 79 |
+
z-index: 2;
|
| 80 |
+
background: linear-gradient(180deg,
|
| 81 |
+
rgba(99, 102, 241, 0.1),
|
| 82 |
+
transparent 70%);
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
.treat-title::before {
|
| 86 |
+
content: '';
|
| 87 |
+
position: absolute;
|
| 88 |
+
top: 0;
|
| 89 |
+
left: 50%;
|
| 90 |
+
width: 80%;
|
| 91 |
+
height: 1px;
|
| 92 |
+
background: linear-gradient(90deg,
|
| 93 |
+
transparent,
|
| 94 |
+
rgba(99, 102, 241, 0.5),
|
| 95 |
+
transparent);
|
| 96 |
+
transform: translateX(-50%);
|
| 97 |
+
animation: scanline 3s ease-in-out infinite;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.treat-title h1 {
|
| 101 |
+
font-size: 4.5rem;
|
| 102 |
+
font-weight: 800;
|
| 103 |
+
background: linear-gradient(135deg,
|
| 104 |
+
#2a2b55 0%,
|
| 105 |
+
#6366f1 50%,
|
| 106 |
+
#2a2b55 100%);
|
| 107 |
+
background-size: 200% auto;
|
| 108 |
+
-webkit-background-clip: text;
|
| 109 |
+
-webkit-text-fill-color: transparent;
|
| 110 |
+
margin-bottom: 0.5rem;
|
| 111 |
+
letter-spacing: -0.05em;
|
| 112 |
+
animation: gradientFlow 8s ease infinite;
|
| 113 |
+
position: relative;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
.treat-title h1::after {
|
| 117 |
+
content: attr(data-text);
|
| 118 |
+
position: absolute;
|
| 119 |
+
left: 0;
|
| 120 |
+
top: 0;
|
| 121 |
+
width: 100%;
|
| 122 |
+
height: 100%;
|
| 123 |
+
background: linear-gradient(135deg,
|
| 124 |
+
transparent 0%,
|
| 125 |
+
rgba(99, 102, 241, 0.4) 50%,
|
| 126 |
+
transparent 100%);
|
| 127 |
+
background-size: 200% auto;
|
| 128 |
+
-webkit-background-clip: text;
|
| 129 |
+
-webkit-text-fill-color: transparent;
|
| 130 |
+
opacity: 0.5;
|
| 131 |
+
animation: textGlow 4s ease-in-out infinite;
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.treat-title p {
|
| 135 |
+
font-size: 1.1rem;
|
| 136 |
+
color: rgba(255, 255, 255, 0.7);
|
| 137 |
+
max-width: 600px;
|
| 138 |
+
margin: 0 auto;
|
| 139 |
+
position: relative;
|
| 140 |
+
animation: fadeInUp 1s ease-out;
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
/* Tabs Styling */
|
| 144 |
+
.tabs {
|
| 145 |
+
background: rgba(17, 17, 27, 0.7);
|
| 146 |
+
border: 1px solid rgba(99, 102, 241, 0.2);
|
| 147 |
+
border-radius: 16px;
|
| 148 |
+
padding: 1rem;
|
| 149 |
+
margin: 0 1rem 2rem 1rem;
|
| 150 |
+
position: relative;
|
| 151 |
+
z-index: 2;
|
| 152 |
+
backdrop-filter: blur(10px);
|
| 153 |
+
box-shadow: 0 0 30px rgba(99, 102, 241, 0.1);
|
| 154 |
+
animation: floatIn 1s ease-out;
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
.tabs::before {
|
| 158 |
+
content: '';
|
| 159 |
+
position: absolute;
|
| 160 |
+
top: -1px;
|
| 161 |
+
left: -1px;
|
| 162 |
+
right: -1px;
|
| 163 |
+
bottom: -1px;
|
| 164 |
+
background: linear-gradient(45deg,
|
| 165 |
+
rgba(99, 102, 241, 0.1),
|
| 166 |
+
transparent,
|
| 167 |
+
rgba(99, 102, 241, 0.1));
|
| 168 |
+
border-radius: 16px;
|
| 169 |
+
z-index: -1;
|
| 170 |
+
animation: borderGlow 4s ease-in-out infinite;
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
/* Content Area */
|
| 174 |
+
.content-area {
|
| 175 |
+
background: rgba(17, 17, 27, 0.7) !important;
|
| 176 |
+
border: 1px solid rgba(99, 102, 241, 0.2) !important;
|
| 177 |
+
border-radius: 12px !important;
|
| 178 |
+
padding: 1.5rem !important;
|
| 179 |
+
backdrop-filter: blur(10px);
|
| 180 |
+
position: relative;
|
| 181 |
+
overflow: hidden;
|
| 182 |
+
animation: fadeScale 0.5s ease-out;
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
.content-area::before {
|
| 186 |
+
content: '';
|
| 187 |
+
position: absolute;
|
| 188 |
+
top: -50%;
|
| 189 |
+
left: -50%;
|
| 190 |
+
width: 200%;
|
| 191 |
+
height: 200%;
|
| 192 |
+
background: radial-gradient(circle at center,
|
| 193 |
+
rgba(99, 102, 241, 0.1) 0%,
|
| 194 |
+
transparent 70%);
|
| 195 |
+
animation: rotateGradient 10s linear infinite;
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
/* Input Fields */
|
| 199 |
+
.gradio-textbox textarea {
|
| 200 |
+
background: rgba(17, 17, 27, 0.6) !important;
|
| 201 |
+
border: 1px solid rgba(99, 102, 241, 0.3) !important;
|
| 202 |
+
border-radius: 8px !important;
|
| 203 |
+
color: rgba(255, 255, 255, 0.9) !important;
|
| 204 |
+
font-size: 0.95rem !important;
|
| 205 |
+
line-height: 1.6 !important;
|
| 206 |
+
padding: 1rem !important;
|
| 207 |
+
transition: all 0.3s ease;
|
| 208 |
+
position: relative;
|
| 209 |
+
z-index: 2;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
.gradio-textbox textarea:focus {
|
| 213 |
+
border-color: #6366f1 !important;
|
| 214 |
+
box-shadow: 0 0 20px rgba(99, 102, 241, 0.2) !important;
|
| 215 |
+
background: rgba(17, 17, 27, 0.8) !important;
|
| 216 |
+
transform: translateY(-2px);
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
/* Buttons */
|
| 220 |
+
.gradio-button {
|
| 221 |
+
background: linear-gradient(45deg,
|
| 222 |
+
#6366f1,
|
| 223 |
+
#818cf8,
|
| 224 |
+
#6366f1) !important;
|
| 225 |
+
background-size: 200% auto !important;
|
| 226 |
+
border: none !important;
|
| 227 |
+
border-radius: 8px !important;
|
| 228 |
+
color: white !important;
|
| 229 |
+
font-weight: 600 !important;
|
| 230 |
+
font-size: 0.95rem !important;
|
| 231 |
+
padding: 0.75rem 1.5rem !important;
|
| 232 |
+
letter-spacing: 0.025em !important;
|
| 233 |
+
position: relative;
|
| 234 |
+
overflow: hidden;
|
| 235 |
+
transition: all 0.3s ease !important;
|
| 236 |
+
animation: gradientFlow 3s ease infinite;
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
.gradio-button::before {
|
| 240 |
+
content: '';
|
| 241 |
+
position: absolute;
|
| 242 |
+
top: -50%;
|
| 243 |
+
left: -50%;
|
| 244 |
+
width: 200%;
|
| 245 |
+
height: 200%;
|
| 246 |
+
background: radial-gradient(circle at center,
|
| 247 |
+
rgba(255, 255, 255, 0.2) 0%,
|
| 248 |
+
transparent 70%);
|
| 249 |
+
transform: scale(0);
|
| 250 |
+
transition: transform 0.5s ease;
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
.gradio-button:hover {
|
| 254 |
+
transform: translateY(-2px);
|
| 255 |
+
box-shadow: 0 5px 20px rgba(99, 102, 241, 0.4) !important;
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
.gradio-button:hover::before {
|
| 259 |
+
transform: scale(1);
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
/* Results Area */
|
| 263 |
+
.results-area {
|
| 264 |
+
background: rgba(17, 17, 27, 0.7) !important;
|
| 265 |
+
border: 1px solid rgba(99, 102, 241, 0.2) !important;
|
| 266 |
+
border-radius: 12px !important;
|
| 267 |
+
margin-top: 2rem !important;
|
| 268 |
+
backdrop-filter: blur(10px);
|
| 269 |
+
animation: slideUp 0.5s ease-out;
|
| 270 |
+
position: relative;
|
| 271 |
+
overflow: hidden;
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
.footer {
|
| 275 |
+
text-align: center;
|
| 276 |
+
padding: 2rem 0;
|
| 277 |
+
margin-top: 3rem;
|
| 278 |
+
font-size: 1.0rem;
|
| 279 |
+
position: relative;
|
| 280 |
+
z-index: 2;
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
.footer p {
|
| 284 |
+
color: rgba(255, 255, 255, 0.8);
|
| 285 |
+
display: flex;
|
| 286 |
+
align-items: center;
|
| 287 |
+
justify-content: center;
|
| 288 |
+
gap: 0.5rem;
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
.footer .heart {
|
| 292 |
+
color: #6366f1;
|
| 293 |
+
display: inline-block;
|
| 294 |
+
position: relative;
|
| 295 |
+
font-size: 1.0rem;
|
| 296 |
+
transform-origin: center;
|
| 297 |
+
animation: heartbeat 1.5s ease infinite;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.footer .heart::before,
|
| 301 |
+
.footer .heart::after {
|
| 302 |
+
content: '✦';
|
| 303 |
+
position: absolute;
|
| 304 |
+
opacity: 0;
|
| 305 |
+
font-size: 0.6rem;
|
| 306 |
+
animation: sparkle 1.5s ease infinite;
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
.footer .heart::before {
|
| 310 |
+
top: -8px;
|
| 311 |
+
left: -8px;
|
| 312 |
+
animation-delay: 0.2s;
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
.footer .heart::after {
|
| 316 |
+
top: -8px;
|
| 317 |
+
right: -8px;
|
| 318 |
+
animation-delay: 0.4s;
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
.footer .name {
|
| 322 |
+
color: #6366f1;
|
| 323 |
+
text-decoration: none;
|
| 324 |
+
position: relative;
|
| 325 |
+
transition: all 0.3s ease;
|
| 326 |
+
padding: 0 4px;
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
.footer .name:hover {
|
| 330 |
+
color: #818cf8;
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
footer {
|
| 334 |
+
visibility: hidden;
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
/* Animations */
|
| 338 |
+
@keyframes gradientMove {
|
| 339 |
+
0% { background-position: 0% 50%; }
|
| 340 |
+
50% { background-position: 100% 50%; }
|
| 341 |
+
100% { background-position: 0% 50%; }
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
@keyframes floatingParticles {
|
| 345 |
+
0% { transform: translateY(0); }
|
| 346 |
+
100% { transform: translateY(-100%); }
|
| 347 |
+
}
|
| 348 |
+
|
| 349 |
+
@keyframes scanline {
|
| 350 |
+
0% { transform: translateX(-150%) scaleX(0.5); opacity: 0; }
|
| 351 |
+
50% { transform: translateX(-50%) scaleX(1); opacity: 1; }
|
| 352 |
+
100% { transform: translateX(50%) scaleX(0.5); opacity: 0; }
|
| 353 |
+
}
|
| 354 |
+
|
| 355 |
+
@keyframes gradientFlow {
|
| 356 |
+
0% { background-position: 0% 50%; }
|
| 357 |
+
50% { background-position: 100% 50%; }
|
| 358 |
+
100% { background-position: 0% 50%; }
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
@keyframes textGlow {
|
| 362 |
+
0% { opacity: 0.3; transform: scale(1); }
|
| 363 |
+
50% { opacity: 0.5; transform: scale(1.02); }
|
| 364 |
+
100% { opacity: 0.3; transform: scale(1); }
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
@keyframes borderGlow {
|
| 368 |
+
0% { opacity: 0.5; }
|
| 369 |
+
50% { opacity: 1; }
|
| 370 |
+
100% { opacity: 0.5; }
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
@keyframes rotateGradient {
|
| 374 |
+
0% { transform: rotate(0deg); }
|
| 375 |
+
100% { transform: rotate(360deg); }
|
| 376 |
+
}
|
| 377 |
+
|
| 378 |
+
@keyframes fadeScale {
|
| 379 |
+
0% { opacity: 0; transform: scale(0.95); }
|
| 380 |
+
100% { opacity: 1; transform: scale(1); }
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
@keyframes slideUp {
|
| 384 |
+
0% { opacity: 0; transform: translateY(20px); }
|
| 385 |
+
100% { opacity: 1; transform: translateY(0); }
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
@keyframes floatIn {
|
| 389 |
+
0% { opacity: 0; transform: translateY(20px); }
|
| 390 |
+
100% { opacity: 1; transform: translateY(0); }
|
| 391 |
+
}
|
| 392 |
+
|
| 393 |
+
@keyframes fadeInUp {
|
| 394 |
+
0% { opacity: 0; transform: translateY(10px); }
|
| 395 |
+
100% { opacity: 1; transform: translateY(0); }
|
| 396 |
+
}
|
| 397 |
+
|
| 398 |
+
@keyframes heartbeat {
|
| 399 |
+
0% { transform: scale(1); }
|
| 400 |
+
10% { transform: scale(1.2); }
|
| 401 |
+
20% { transform: scale(0.9); }
|
| 402 |
+
30% { transform: scale(1.1); }
|
| 403 |
+
40% { transform: scale(0.95); }
|
| 404 |
+
50% { transform: scale(1); }
|
| 405 |
+
100% { transform: scale(1); }
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
@keyframes sparkle {
|
| 409 |
+
0% { transform: scale(0); opacity: 0; }
|
| 410 |
+
50% { transform: scale(1.2); opacity: 1; }
|
| 411 |
+
100% { transform: scale(0); opacity: 0; }
|
| 412 |
+
}
|
| 413 |
+
"""
|
| 414 |
+
# Start the API server
|
| 415 |
+
def start_api_server():
|
| 416 |
+
# Start uvicorn in a subprocess
|
| 417 |
+
process = subprocess.Popen(["uvicorn", "script_search_api:app", "--reload"])
|
| 418 |
+
return process
|
| 419 |
+
|
| 420 |
+
# Stop the API server
|
| 421 |
+
def stop_api_server(process):
|
| 422 |
+
process.terminate()
|
| 423 |
+
|
| 424 |
+
# Register the exit handler
|
| 425 |
+
api_process = start_api_server()
|
| 426 |
+
atexit.register(stop_api_server, api_process)
|
| 427 |
+
|
| 428 |
+
async def analyze_with_progress(movie_name, progress=gr.Progress()):
|
| 429 |
+
"""Handle analysis with progress updates in Gradio"""
|
| 430 |
+
try:
|
| 431 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
| 432 |
+
# Start the analysis
|
| 433 |
+
response = await client.get(
|
| 434 |
+
"http://localhost:8000/api/start_analysis",
|
| 435 |
+
params={"movie_name": movie_name}
|
| 436 |
+
)
|
| 437 |
+
response.raise_for_status()
|
| 438 |
+
task_id = response.json()["task_id"]
|
| 439 |
+
|
| 440 |
+
# Poll for progress
|
| 441 |
+
while True:
|
| 442 |
+
progress_response = await client.get(
|
| 443 |
+
f"http://localhost:8000/api/progress/{task_id}"
|
| 444 |
+
)
|
| 445 |
+
progress_response.raise_for_status()
|
| 446 |
+
status = progress_response.json()
|
| 447 |
+
|
| 448 |
+
# Update Gradio progress
|
| 449 |
+
progress(status["progress"], desc=status["status"])
|
| 450 |
+
|
| 451 |
+
if status["is_complete"]:
|
| 452 |
+
if status["error"]:
|
| 453 |
+
return f"Error: {status['error']}"
|
| 454 |
+
elif status["result"]:
|
| 455 |
+
triggers = status["result"].get("detected_triggers", [])
|
| 456 |
+
if not triggers or triggers == ["None"]:
|
| 457 |
+
return "✓ No triggers detected in the content."
|
| 458 |
+
else:
|
| 459 |
+
trigger_list = "\n".join([f"• {trigger}" for trigger in triggers])
|
| 460 |
+
return f"⚠ Triggers Detected:\n{trigger_list}"
|
| 461 |
+
break
|
| 462 |
+
|
| 463 |
+
await asyncio.sleep(0.5)
|
| 464 |
+
|
| 465 |
+
except Exception as e:
|
| 466 |
+
return f"Error: {str(e)}"
|
| 467 |
+
|
| 468 |
+
def analyze_with_loading(text, progress=gr.Progress()):
|
| 469 |
+
"""
|
| 470 |
+
Synchronous wrapper for the async analyze_content function with smooth progress updates
|
| 471 |
+
"""
|
| 472 |
+
# Initialize progress
|
| 473 |
+
progress(0, desc="Starting analysis...")
|
| 474 |
+
|
| 475 |
+
# Initial setup phase - smoother progression
|
| 476 |
+
for i in range(25):
|
| 477 |
+
time.sleep(0.04) # Slightly longer sleep for smoother animation
|
| 478 |
+
progress((i + 1) / 100, desc="Initializing analysis...")
|
| 479 |
+
|
| 480 |
+
# Pre-processing phase
|
| 481 |
+
for i in range(25, 45):
|
| 482 |
+
time.sleep(0.03)
|
| 483 |
+
progress((i + 1) / 100, desc="Pre-processing content...")
|
| 484 |
+
|
| 485 |
+
# Perform analysis
|
| 486 |
+
progress(0.45, desc="Analyzing content...")
|
| 487 |
+
try:
|
| 488 |
+
result = asyncio.run(analyze_content(text))
|
| 489 |
+
|
| 490 |
+
# Analysis progress simulation
|
| 491 |
+
for i in range(45, 75):
|
| 492 |
+
time.sleep(0.03)
|
| 493 |
+
progress((i + 1) / 100, desc="Processing results...")
|
| 494 |
+
|
| 495 |
+
except Exception as e:
|
| 496 |
+
return f"Error during analysis: {str(e)}"
|
| 497 |
+
|
| 498 |
+
# Final processing with smooth progression
|
| 499 |
+
for i in range(75, 100):
|
| 500 |
+
time.sleep(0.02)
|
| 501 |
+
progress((i + 1) / 100, desc="Finalizing results...")
|
| 502 |
+
|
| 503 |
+
# Format the results
|
| 504 |
+
triggers = result["detected_triggers"]
|
| 505 |
+
if triggers == ["None"]:
|
| 506 |
+
return "✓ No triggers detected in the content."
|
| 507 |
+
else:
|
| 508 |
+
trigger_list = "\n".join([f"• {trigger}" for trigger in triggers])
|
| 509 |
+
return f"⚠ Triggers Detected:\n{trigger_list}"
|
| 510 |
+
|
| 511 |
+
# Update the Gradio interface with new styling
|
| 512 |
+
import gradio as gr
|
| 513 |
+
from model.analyzer import analyze_content
|
| 514 |
+
import asyncio
|
| 515 |
+
import time
|
| 516 |
+
import httpx
|
| 517 |
+
import subprocess
|
| 518 |
+
import atexit
|
| 519 |
+
|
| 520 |
+
# Keep your existing CSS and server setup code...
|
| 521 |
+
# [Previous code until the interface definition remains the same]
|
| 522 |
+
|
| 523 |
+
# Update the Gradio interface with fixed button handling
|
| 524 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
|
| 525 |
+
# Title section
|
| 526 |
+
gr.HTML("""
|
| 527 |
+
<div class="treat-title">
|
| 528 |
+
<h1 data-text="TREAT">TREAT</h1>
|
| 529 |
+
<p>Trigger Recognition for Enjoyable and Appropriate Television</p>
|
| 530 |
+
</div>
|
| 531 |
+
""")
|
| 532 |
+
|
| 533 |
+
with gr.Tabs() as tabs:
|
| 534 |
+
with gr.Tab("Content Analysis"): # Changed from TabItem to Tab
|
| 535 |
+
with gr.Column():
|
| 536 |
+
input_text = gr.Textbox(
|
| 537 |
+
label="ANALYZE CONTENT",
|
| 538 |
+
placeholder="Enter the content you want to analyze...",
|
| 539 |
+
lines=8
|
| 540 |
+
)
|
| 541 |
+
analyze_btn = gr.Button("✨ Analyze")
|
| 542 |
+
|
| 543 |
+
with gr.Tab("Movie Search"): # Changed from TabItem to Tab
|
| 544 |
+
with gr.Column():
|
| 545 |
+
search_query = gr.Textbox(
|
| 546 |
+
label="SEARCH MOVIES",
|
| 547 |
+
placeholder="Type a movie title to search...",
|
| 548 |
+
lines=1
|
| 549 |
+
)
|
| 550 |
+
search_button = gr.Button("🔍 Search")
|
| 551 |
+
|
| 552 |
+
output_text = gr.Textbox(
|
| 553 |
+
label="ANALYSIS RESULTS",
|
| 554 |
+
lines=5,
|
| 555 |
+
interactive=False
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
status_text = gr.Markdown(
|
| 559 |
+
value=""
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
# Define click events
|
| 563 |
+
analyze_btn.click(
|
| 564 |
+
fn=analyze_with_loading,
|
| 565 |
+
inputs=input_text,
|
| 566 |
+
outputs=output_text
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
search_button.click(
|
| 570 |
+
fn=analyze_with_progress,
|
| 571 |
+
inputs=search_query,
|
| 572 |
+
outputs=output_text
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
gr.HTML("""
|
| 576 |
+
<div class="footer">
|
| 577 |
+
<p>Made with <span class="heart">💖</span> by <a href="https://www.linkedin.com/in/kubermehta/" target="_blank">Kuber Mehta</a></p>
|
| 578 |
+
</div>
|
| 579 |
+
""")
|
| 580 |
+
|
| 581 |
+
if __name__ == "__main__":
|
| 582 |
+
iface.launch(
|
| 583 |
+
share=False,
|
| 584 |
+
debug=True,
|
| 585 |
+
show_error=True
|
| 586 |
+
)
|
model/analyzer.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from typing import Dict, List, Union, Optional
|
| 7 |
+
import logging
|
| 8 |
+
import traceback
|
| 9 |
+
|
| 10 |
+
# Configure logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
class ContentAnalyzer:
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
self.model = None
|
| 18 |
+
self.tokenizer = None
|
| 19 |
+
self.batch_size = 2 # Reduced batch size for deeper thinking
|
| 20 |
+
self.max_thinking_time = 30 # Maximum seconds per batch for reasoning
|
| 21 |
+
self.trigger_categories = {
|
| 22 |
+
"Violence": {
|
| 23 |
+
"mapped_name": "Violence",
|
| 24 |
+
"description": "Physical force, aggression, or actions causing harm to living beings or property."
|
| 25 |
+
},
|
| 26 |
+
"Death": {
|
| 27 |
+
"mapped_name": "Death References",
|
| 28 |
+
"description": "Direct or implied loss of life, mortality discussions, or death-related events."
|
| 29 |
+
},
|
| 30 |
+
"Substance_Use": {
|
| 31 |
+
"mapped_name": "Substance Use",
|
| 32 |
+
"description": "Usage or discussion of drugs, alcohol, or addictive substances."
|
| 33 |
+
},
|
| 34 |
+
"Gore": {
|
| 35 |
+
"mapped_name": "Gore",
|
| 36 |
+
"description": "Graphic depictions of injuries, blood, or severe bodily harm."
|
| 37 |
+
},
|
| 38 |
+
"Sexual_Content": {
|
| 39 |
+
"mapped_name": "Sexual Content",
|
| 40 |
+
"description": "Sexual activity, intimacy, or explicit sexual references."
|
| 41 |
+
},
|
| 42 |
+
"Sexual_Abuse": {
|
| 43 |
+
"mapped_name": "Sexual Abuse",
|
| 44 |
+
"description": "Non-consensual sexual acts, exploitation, or sexual violence."
|
| 45 |
+
},
|
| 46 |
+
"Self_Harm": {
|
| 47 |
+
"mapped_name": "Self-Harm",
|
| 48 |
+
"description": "Self-inflicted injury, suicidal thoughts, or destructive behaviors."
|
| 49 |
+
},
|
| 50 |
+
"Mental_Health": {
|
| 51 |
+
"mapped_name": "Mental Health Issues",
|
| 52 |
+
"description": "Psychological distress, mental disorders, or emotional trauma."
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
logger.info(f"Initialized analyzer with device: {self.device}")
|
| 56 |
+
|
| 57 |
+
async def load_model(self, progress=None) -> None:
|
| 58 |
+
"""Load the model and tokenizer with progress updates."""
|
| 59 |
+
try:
|
| 60 |
+
if progress:
|
| 61 |
+
progress(0.1, "Loading tokenizer...")
|
| 62 |
+
|
| 63 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 64 |
+
"LGAI-EXAONE/EXAONE-Deep-2.4B",
|
| 65 |
+
use_fast=True
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
if progress:
|
| 69 |
+
progress(0.3, "Loading model...")
|
| 70 |
+
|
| 71 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 72 |
+
"LGAI-EXAONE/EXAONE-Deep-2.4B",
|
| 73 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
| 74 |
+
device_map="auto"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if self.device == "cuda":
|
| 78 |
+
self.model.eval()
|
| 79 |
+
torch.cuda.empty_cache()
|
| 80 |
+
|
| 81 |
+
if progress:
|
| 82 |
+
progress(0.5, "Model loaded successfully")
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
logger.error(f"Error loading model: {str(e)}")
|
| 86 |
+
raise
|
| 87 |
+
|
| 88 |
+
def _chunk_text(self, text: str, chunk_size: int = 20000, overlap: int = 100) -> List[str]:
|
| 89 |
+
"""Split text into overlapping chunks."""
|
| 90 |
+
words = text.split()
|
| 91 |
+
chunks = []
|
| 92 |
+
for i in range(0, len(words), chunk_size - overlap):
|
| 93 |
+
chunk = ' '.join(words[i:i + chunk_size])
|
| 94 |
+
chunks.append(chunk)
|
| 95 |
+
return chunks
|
| 96 |
+
|
| 97 |
+
def _validate_response(self, response: str) -> str:
|
| 98 |
+
"""Validate and clean model response."""
|
| 99 |
+
valid_responses = {"YES", "NO", "MAYBE"}
|
| 100 |
+
response = response.strip().upper()
|
| 101 |
+
first_word = response.split()[0] if response else "NO"
|
| 102 |
+
return first_word if first_word in valid_responses else "NO"
|
| 103 |
+
|
| 104 |
+
async def analyze_chunks_batch(
|
| 105 |
+
self,
|
| 106 |
+
chunks: List[str],
|
| 107 |
+
progress: Optional[gr.Progress] = None,
|
| 108 |
+
current_progress: float = 0,
|
| 109 |
+
progress_step: float = 0
|
| 110 |
+
) -> Dict[str, float]:
|
| 111 |
+
"""Analyze multiple chunks in batches."""
|
| 112 |
+
all_triggers = {}
|
| 113 |
+
|
| 114 |
+
for category, info in self.trigger_categories.items():
|
| 115 |
+
mapped_name = info["mapped_name"]
|
| 116 |
+
description = info["description"]
|
| 117 |
+
|
| 118 |
+
for i in range(0, len(chunks), self.batch_size):
|
| 119 |
+
batch_chunks = chunks[i:i + self.batch_size]
|
| 120 |
+
prompts = []
|
| 121 |
+
|
| 122 |
+
for chunk in batch_chunks:
|
| 123 |
+
prompt = f"Analyze text for {mapped_name}. Definition: {description}. Content: \"{chunk}\". Answer YES/NO/MAYBE based on clear evidence."
|
| 124 |
+
prompts.append(prompt)
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
inputs = self.tokenizer(
|
| 128 |
+
prompts,
|
| 129 |
+
return_tensors="pt",
|
| 130 |
+
padding=True,
|
| 131 |
+
truncation=True,
|
| 132 |
+
max_length=512
|
| 133 |
+
).to(self.device)
|
| 134 |
+
|
| 135 |
+
import signal
|
| 136 |
+
def timeout_handler(signum, frame):
|
| 137 |
+
raise TimeoutError("Model thinking time exceeded")
|
| 138 |
+
|
| 139 |
+
signal.signal(signal.SIGALRM, timeout_handler)
|
| 140 |
+
signal.alarm(self.max_thinking_time)
|
| 141 |
+
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
outputs = self.model.generate(
|
| 144 |
+
**inputs,
|
| 145 |
+
max_new_tokens=20,
|
| 146 |
+
temperature=0.2,
|
| 147 |
+
top_p=0.85,
|
| 148 |
+
num_beams=3,
|
| 149 |
+
early_stopping=True,
|
| 150 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 151 |
+
do_sample=True
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
responses = [
|
| 155 |
+
self.tokenizer.decode(output, skip_special_tokens=True)
|
| 156 |
+
for output in outputs
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
for response in responses:
|
| 160 |
+
validated_response = self._validate_response(response)
|
| 161 |
+
if validated_response == "YES":
|
| 162 |
+
all_triggers[mapped_name] = all_triggers.get(mapped_name, 0) + 1
|
| 163 |
+
elif validated_response == "MAYBE":
|
| 164 |
+
all_triggers[mapped_name] = all_triggers.get(mapped_name, 0) + 0.5
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Error processing batch for {mapped_name}: {str(e)}")
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
if progress:
|
| 171 |
+
current_progress += progress_step
|
| 172 |
+
progress(min(current_progress, 0.9), f"Analyzing {mapped_name}...")
|
| 173 |
+
|
| 174 |
+
return all_triggers
|
| 175 |
+
|
| 176 |
+
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
|
| 177 |
+
"""Analyze the entire script."""
|
| 178 |
+
if not self.model or not self.tokenizer:
|
| 179 |
+
await self.load_model(progress)
|
| 180 |
+
|
| 181 |
+
chunks = self._chunk_text(script)
|
| 182 |
+
identified_triggers = await self.analyze_chunks_batch(
|
| 183 |
+
chunks,
|
| 184 |
+
progress,
|
| 185 |
+
current_progress=0.5,
|
| 186 |
+
progress_step=0.4 / (len(chunks) * len(self.trigger_categories))
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
if progress:
|
| 190 |
+
progress(0.95, "Finalizing results...")
|
| 191 |
+
|
| 192 |
+
final_triggers = []
|
| 193 |
+
chunk_threshold = max(1, len(chunks) * 0.1)
|
| 194 |
+
|
| 195 |
+
for mapped_name, count in identified_triggers.items():
|
| 196 |
+
if count >= chunk_threshold:
|
| 197 |
+
final_triggers.append(mapped_name)
|
| 198 |
+
|
| 199 |
+
return final_triggers if final_triggers else ["None"]
|
| 200 |
+
|
| 201 |
+
async def analyze_content(
|
| 202 |
+
script: str,
|
| 203 |
+
progress: Optional[gr.Progress] = None
|
| 204 |
+
) -> Dict[str, Union[List[str], str]]:
|
| 205 |
+
"""Main analysis function for the Gradio interface."""
|
| 206 |
+
logger.info("Starting content analysis")
|
| 207 |
+
|
| 208 |
+
analyzer = ContentAnalyzer()
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
# Fix: Use the analyzer instance's method instead of undefined function
|
| 212 |
+
triggers = await analyzer.analyze_script(script, progress)
|
| 213 |
+
|
| 214 |
+
if progress:
|
| 215 |
+
progress(1.0, "Analysis complete!")
|
| 216 |
+
|
| 217 |
+
result = {
|
| 218 |
+
"detected_triggers": triggers,
|
| 219 |
+
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
|
| 220 |
+
"model": "google/large-t5-base",
|
| 221 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
logger.info(f"Analysis complete: {result}")
|
| 225 |
+
return result
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.error(f"Analysis error: {str(e)}")
|
| 229 |
+
return {
|
| 230 |
+
"detected_triggers": ["Error occurred during analysis"],
|
| 231 |
+
"confidence": "Error",
|
| 232 |
+
"model": "google/flan-t5-base",
|
| 233 |
+
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 234 |
+
"error": str(e)
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
if __name__ == "__main__":
|
| 238 |
+
iface = gr.Interface(
|
| 239 |
+
fn=analyze_content,
|
| 240 |
+
inputs=gr.Textbox(lines=8, label="Input Text"),
|
| 241 |
+
outputs=gr.JSON(),
|
| 242 |
+
title="Content Trigger Analysis",
|
| 243 |
+
description="Analyze text content for sensitive topics and trigger warnings"
|
| 244 |
+
)
|
| 245 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
flask_cors
|
| 3 |
+
torch
|
| 4 |
+
gradio
|
| 5 |
+
transformers
|
| 6 |
+
accelerate
|
| 7 |
+
safetensors
|
| 8 |
+
huggingface-hub
|
| 9 |
+
beautifulsoup4
|
| 10 |
+
protobuf
|
| 11 |
+
fastapi
|
script_search_api.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# script_search_api.py
|
| 2 |
+
from fastapi import FastAPI, HTTPException
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
import asyncio
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
from typing import Dict, Optional
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
import logging
|
| 10 |
+
import requests
|
| 11 |
+
from bs4 import BeautifulSoup
|
| 12 |
+
from difflib import get_close_matches
|
| 13 |
+
from model.analyzer import analyze_content
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
app = FastAPI()
|
| 19 |
+
|
| 20 |
+
app.add_middleware(
|
| 21 |
+
CORSMiddleware,
|
| 22 |
+
allow_origins=["*"],
|
| 23 |
+
allow_credentials=True,
|
| 24 |
+
allow_methods=["*"],
|
| 25 |
+
allow_headers=["*"],
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class ProgressState:
|
| 30 |
+
progress: float
|
| 31 |
+
status: str
|
| 32 |
+
timestamp: datetime
|
| 33 |
+
task_id: str
|
| 34 |
+
is_complete: bool = False
|
| 35 |
+
result: Optional[dict] = None
|
| 36 |
+
error: Optional[str] = None
|
| 37 |
+
|
| 38 |
+
class ProgressResponse(BaseModel):
|
| 39 |
+
progress: float
|
| 40 |
+
status: str
|
| 41 |
+
is_complete: bool
|
| 42 |
+
result: Optional[dict] = None
|
| 43 |
+
error: Optional[str] = None
|
| 44 |
+
|
| 45 |
+
# Global progress tracker
|
| 46 |
+
progress_tracker: Dict[str, ProgressState] = {}
|
| 47 |
+
|
| 48 |
+
BASE_URL = "https://imsdb.com"
|
| 49 |
+
ALL_SCRIPTS_URL = f"{BASE_URL}/all-scripts.html"
|
| 50 |
+
|
| 51 |
+
def create_task_id(movie_name: str) -> str:
|
| 52 |
+
"""Create a unique task ID for a movie analysis request"""
|
| 53 |
+
return f"{movie_name}-{datetime.now().timestamp()}"
|
| 54 |
+
|
| 55 |
+
async def cleanup_old_tasks():
|
| 56 |
+
"""Remove tasks older than 1 hour"""
|
| 57 |
+
while True:
|
| 58 |
+
current_time = datetime.now()
|
| 59 |
+
expired_tasks = [
|
| 60 |
+
task_id for task_id, state in progress_tracker.items()
|
| 61 |
+
if current_time - state.timestamp > timedelta(hours=1)
|
| 62 |
+
]
|
| 63 |
+
for task_id in expired_tasks:
|
| 64 |
+
del progress_tracker[task_id]
|
| 65 |
+
await asyncio.sleep(300) # Cleanup every 5 minutes
|
| 66 |
+
|
| 67 |
+
@app.on_event("startup")
|
| 68 |
+
async def startup_event():
|
| 69 |
+
"""Initialize the server and start cleanup task"""
|
| 70 |
+
progress_tracker.clear()
|
| 71 |
+
asyncio.create_task(cleanup_old_tasks())
|
| 72 |
+
logger.info("Server started, progress tracker initialized")
|
| 73 |
+
|
| 74 |
+
def update_progress(task_id: str, progress: float, status: str, result: Optional[dict] = None, error: Optional[str] = None):
|
| 75 |
+
"""Update progress state for a task"""
|
| 76 |
+
is_complete = progress >= 1.0
|
| 77 |
+
progress_tracker[task_id] = ProgressState(
|
| 78 |
+
progress=progress,
|
| 79 |
+
status=status,
|
| 80 |
+
timestamp=datetime.now(),
|
| 81 |
+
task_id=task_id,
|
| 82 |
+
is_complete=is_complete,
|
| 83 |
+
result=result,
|
| 84 |
+
error=error
|
| 85 |
+
)
|
| 86 |
+
logger.info(f"Task {task_id}: {status} (Progress: {progress * 100:.0f}%)")
|
| 87 |
+
|
| 88 |
+
@app.get("/api/start_analysis")
|
| 89 |
+
async def start_analysis(movie_name: str):
|
| 90 |
+
"""Start a new analysis task"""
|
| 91 |
+
task_id = create_task_id(movie_name)
|
| 92 |
+
update_progress(task_id, 0.0, "Starting analysis...")
|
| 93 |
+
|
| 94 |
+
# Start the analysis task in the background
|
| 95 |
+
asyncio.create_task(run_analysis(task_id, movie_name))
|
| 96 |
+
|
| 97 |
+
return {"task_id": task_id}
|
| 98 |
+
|
| 99 |
+
@app.get("/api/progress/{task_id}")
|
| 100 |
+
async def get_progress(task_id: str) -> ProgressResponse:
|
| 101 |
+
"""Get current progress for a task"""
|
| 102 |
+
if task_id not in progress_tracker:
|
| 103 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
| 104 |
+
|
| 105 |
+
state = progress_tracker[task_id]
|
| 106 |
+
return ProgressResponse(
|
| 107 |
+
progress=state.progress,
|
| 108 |
+
status=state.status,
|
| 109 |
+
is_complete=state.is_complete,
|
| 110 |
+
result=state.result,
|
| 111 |
+
error=state.error
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def find_movie_link(movie_name: str, soup: BeautifulSoup) -> str | None:
|
| 115 |
+
"""Find the closest matching movie link from the script database."""
|
| 116 |
+
movie_links = {link.text.strip().lower(): link['href'] for link in soup.find_all('a', href=True)}
|
| 117 |
+
close_matches = get_close_matches(movie_name.lower(), movie_links.keys(), n=1, cutoff=0.6)
|
| 118 |
+
|
| 119 |
+
if close_matches:
|
| 120 |
+
logger.info(f"Close match found: {close_matches[0]}")
|
| 121 |
+
return BASE_URL + movie_links[close_matches[0]]
|
| 122 |
+
|
| 123 |
+
logger.info("No close match found.")
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
def find_script_link(soup: BeautifulSoup, movie_name: str) -> str | None:
|
| 127 |
+
"""Find the script download link for a given movie."""
|
| 128 |
+
patterns = [
|
| 129 |
+
f'Read "{movie_name}" Script',
|
| 130 |
+
f'Read "{movie_name.title()}" Script',
|
| 131 |
+
f'Read "{movie_name.upper()}" Script',
|
| 132 |
+
f'Read "{movie_name.lower()}" Script'
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
for link in soup.find_all('a', href=True):
|
| 136 |
+
link_text = link.text.strip()
|
| 137 |
+
if any(pattern.lower() in link_text.lower() for pattern in patterns):
|
| 138 |
+
return link['href']
|
| 139 |
+
elif all(word.lower() in link_text.lower() for word in ["Read", "Script", movie_name]):
|
| 140 |
+
return link['href']
|
| 141 |
+
return None
|
| 142 |
+
|
| 143 |
+
def fetch_script(movie_name: str) -> str | None:
|
| 144 |
+
"""Fetch and extract the script content for a given movie."""
|
| 145 |
+
# Initial page load
|
| 146 |
+
update_progress(movie_name, 0.1, "Fetching the script database...")
|
| 147 |
+
try:
|
| 148 |
+
response = requests.get(ALL_SCRIPTS_URL)
|
| 149 |
+
response.raise_for_status()
|
| 150 |
+
except requests.RequestException as e:
|
| 151 |
+
logger.error(f"Failed to load the main page: {str(e)}")
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
# Search for movie
|
| 155 |
+
update_progress(movie_name, 0.2, "Searching for the movie...")
|
| 156 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 157 |
+
movie_link = find_movie_link(movie_name, soup)
|
| 158 |
+
|
| 159 |
+
if not movie_link:
|
| 160 |
+
logger.error(f"Script for '{movie_name}' not found.")
|
| 161 |
+
return None
|
| 162 |
+
|
| 163 |
+
# Fetch movie page
|
| 164 |
+
update_progress(movie_name, 0.3, "Loading movie details...")
|
| 165 |
+
try:
|
| 166 |
+
response = requests.get(movie_link)
|
| 167 |
+
response.raise_for_status()
|
| 168 |
+
except requests.RequestException as e:
|
| 169 |
+
logger.error(f"Failed to load the movie page: {str(e)}")
|
| 170 |
+
return None
|
| 171 |
+
|
| 172 |
+
# Find script link
|
| 173 |
+
update_progress(movie_name, 0.4, "Locating script download...")
|
| 174 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 175 |
+
script_link = find_script_link(soup, movie_name)
|
| 176 |
+
|
| 177 |
+
if not script_link:
|
| 178 |
+
logger.error(f"Unable to find script link for '{movie_name}'.")
|
| 179 |
+
return None
|
| 180 |
+
|
| 181 |
+
# Fetch script content
|
| 182 |
+
script_page_url = BASE_URL + script_link
|
| 183 |
+
update_progress(movie_name, 0.5, "Downloading script content...")
|
| 184 |
+
|
| 185 |
+
try:
|
| 186 |
+
response = requests.get(script_page_url)
|
| 187 |
+
response.raise_for_status()
|
| 188 |
+
except requests.RequestException as e:
|
| 189 |
+
logger.error(f"Failed to load the script: {str(e)}")
|
| 190 |
+
return None
|
| 191 |
+
|
| 192 |
+
# Extract script text
|
| 193 |
+
update_progress(movie_name, 0.6, "Extracting script text...")
|
| 194 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 195 |
+
script_content = soup.find('pre')
|
| 196 |
+
|
| 197 |
+
if script_content:
|
| 198 |
+
update_progress(movie_name, 0.7, "Script extracted successfully")
|
| 199 |
+
return script_content.get_text()
|
| 200 |
+
else:
|
| 201 |
+
logger.error("Failed to extract script content.")
|
| 202 |
+
return None
|
| 203 |
+
|
| 204 |
+
async def run_analysis(task_id: str, movie_name: str):
|
| 205 |
+
"""Run the actual analysis task"""
|
| 206 |
+
try:
|
| 207 |
+
# Fetch script
|
| 208 |
+
update_progress(task_id, 0.2, "Fetching script...")
|
| 209 |
+
script_text = fetch_script(movie_name)
|
| 210 |
+
if not script_text:
|
| 211 |
+
raise Exception("Script not found")
|
| 212 |
+
|
| 213 |
+
# Analyze content
|
| 214 |
+
update_progress(task_id, 0.6, "Analyzing content...")
|
| 215 |
+
result = await analyze_content(script_text)
|
| 216 |
+
|
| 217 |
+
# Complete
|
| 218 |
+
update_progress(task_id, 1.0, "Analysis complete", result=result)
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
logger.error(f"Error in analysis: {str(e)}", exc_info=True)
|
| 222 |
+
update_progress(task_id, 1.0, "Error occurred", error=str(e))
|
| 223 |
+
|
| 224 |
+
@app.get("/api/fetch_and_analyze")
|
| 225 |
+
async def fetch_and_analyze(movie_name: str):
|
| 226 |
+
"""Fetch and analyze a movie script, with progress tracking."""
|
| 227 |
+
try:
|
| 228 |
+
# Initialize progress
|
| 229 |
+
task_id = create_task_id(movie_name)
|
| 230 |
+
update_progress(task_id, 0.0, "Starting script search...")
|
| 231 |
+
|
| 232 |
+
# Fetch script
|
| 233 |
+
script_text = fetch_script(movie_name)
|
| 234 |
+
if not script_text:
|
| 235 |
+
raise HTTPException(status_code=404, detail="Script not found or error occurred")
|
| 236 |
+
|
| 237 |
+
# Analyze content
|
| 238 |
+
update_progress(task_id, 0.8, "Analyzing script content...")
|
| 239 |
+
result = await analyze_content(script_text)
|
| 240 |
+
|
| 241 |
+
# Finalize
|
| 242 |
+
update_progress(task_id, 1.0, "Analysis complete!")
|
| 243 |
+
return result
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.error(f"Error in fetch_and_analyze: {str(e)}", exc_info=True)
|
| 247 |
+
# Clean up progress tracker in case of error
|
| 248 |
+
if movie_name in progress_tracker:
|
| 249 |
+
del progress_tracker[movie_name]
|
| 250 |
+
raise HTTPException(status_code=500, detail=f"Internal Server Error: {str(e)}")
|
| 251 |
+
|
| 252 |
+
@app.get("/api/progress")
|
| 253 |
+
def get_progress(movie_name: str):
|
| 254 |
+
"""Get the current progress and status for a movie analysis."""
|
| 255 |
+
if movie_name not in progress_tracker:
|
| 256 |
+
return {
|
| 257 |
+
"progress": 0,
|
| 258 |
+
"status": "Waiting to start..."
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
progress_info = progress_tracker[movie_name]
|
| 262 |
+
|
| 263 |
+
# Clean up old entries (optional)
|
| 264 |
+
current_time = datetime.now()
|
| 265 |
+
if (current_time - progress_info.timestamp).total_seconds() > 3600: # 1 hour timeout
|
| 266 |
+
del progress_tracker[movie_name]
|
| 267 |
+
return {
|
| 268 |
+
"progress": 0,
|
| 269 |
+
"status": "Session expired. Please try again."
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
return {
|
| 273 |
+
"progress": progress_info.progress,
|
| 274 |
+
"status": progress_info.status
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
if __name__ == "__main__":
|
| 278 |
+
import uvicorn
|
| 279 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|