Spaces:
Sleeping
Sleeping
KUNAL SHAW
commited on
Commit
·
dc3a91a
1
Parent(s):
e0075a3
Fix Milvus collection initialization and Towhee connection
Browse files
app.py
CHANGED
|
@@ -243,20 +243,74 @@ else:
|
|
| 243 |
print(f"Connecting to Milvus Host: {host_milvus}")
|
| 244 |
connections.connect(host=host_milvus, port='19530')
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
collection = Collection(COLLECTION_NAME)
|
| 248 |
-
collection.load(
|
| 249 |
utility.load_state(COLLECTION_NAME)
|
| 250 |
utility.loading_progress(COLLECTION_NAME)
|
| 251 |
|
| 252 |
max_input_length = 500 # Maximum length allowed by the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
# Create the combined pipe for question encoding and answer retrieval
|
| 254 |
combined_pipe = (
|
| 255 |
pipe.input('question')
|
| 256 |
.map('question', 'vec', lambda x: x[:max_input_length]) # Truncate the question if longer than 512 tokens
|
| 257 |
.map('vec', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))
|
| 258 |
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
|
| 259 |
-
.map('vec', 'res', ops.ann_search.milvus_client(
|
| 260 |
.map('res', 'answer', lambda x: [id_answer[int(i[0])] for i in x])
|
| 261 |
.output('question', 'answer')
|
| 262 |
)
|
|
|
|
| 243 |
print(f"Connecting to Milvus Host: {host_milvus}")
|
| 244 |
connections.connect(host=host_milvus, port='19530')
|
| 245 |
|
| 246 |
+
# Check if collection exists, if not create and populate it
|
| 247 |
+
if not utility.has_collection(COLLECTION_NAME):
|
| 248 |
+
print(f"Collection {COLLECTION_NAME} not found. Creating and populating...")
|
| 249 |
+
|
| 250 |
+
# 1. Define Schema
|
| 251 |
+
fields = [
|
| 252 |
+
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=False),
|
| 253 |
+
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=768) # DPR uses 768 dims
|
| 254 |
+
]
|
| 255 |
+
schema = CollectionSchema(fields, "Medical Chatbot QA")
|
| 256 |
+
collection = Collection(COLLECTION_NAME, schema)
|
| 257 |
+
|
| 258 |
+
# 2. Generate Embeddings
|
| 259 |
+
print("Generating embeddings for initial data...")
|
| 260 |
+
embedding_pipe = (
|
| 261 |
+
pipe.input('question')
|
| 262 |
+
.map('question', 'vec', lambda x: x[:500])
|
| 263 |
+
.map('vec', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))
|
| 264 |
+
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
|
| 265 |
+
.output('vec')
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
vectors = []
|
| 269 |
+
# Process in batches to be safe
|
| 270 |
+
for q in df['question']:
|
| 271 |
+
res = embedding_pipe(q)
|
| 272 |
+
vectors.append(res.get()[0])
|
| 273 |
+
|
| 274 |
+
# 3. Insert Data
|
| 275 |
+
print("Inserting data into Zilliz...")
|
| 276 |
+
collection.insert([df['id'].tolist(), vectors])
|
| 277 |
+
|
| 278 |
+
# 4. Create Index
|
| 279 |
+
print("Creating index...")
|
| 280 |
+
index_params = {
|
| 281 |
+
"metric_type": "IP",
|
| 282 |
+
"index_type": "AUTOINDEX",
|
| 283 |
+
"params": {}
|
| 284 |
+
}
|
| 285 |
+
collection.create_index(field_name="embedding", index_params=index_params)
|
| 286 |
+
print("Collection setup complete.")
|
| 287 |
|
| 288 |
collection = Collection(COLLECTION_NAME)
|
| 289 |
+
collection.load()
|
| 290 |
utility.load_state(COLLECTION_NAME)
|
| 291 |
utility.loading_progress(COLLECTION_NAME)
|
| 292 |
|
| 293 |
max_input_length = 500 # Maximum length allowed by the model
|
| 294 |
+
|
| 295 |
+
# Configure Towhee Milvus Client arguments based on connection type
|
| 296 |
+
milvus_args = {
|
| 297 |
+
"collection_name": COLLECTION_NAME,
|
| 298 |
+
"limit": 1
|
| 299 |
+
}
|
| 300 |
+
if milvus_uri and milvus_token:
|
| 301 |
+
milvus_args["uri"] = milvus_uri
|
| 302 |
+
milvus_args["token"] = milvus_token
|
| 303 |
+
else:
|
| 304 |
+
milvus_args["host"] = host_milvus
|
| 305 |
+
milvus_args["port"] = '19530'
|
| 306 |
+
|
| 307 |
# Create the combined pipe for question encoding and answer retrieval
|
| 308 |
combined_pipe = (
|
| 309 |
pipe.input('question')
|
| 310 |
.map('question', 'vec', lambda x: x[:max_input_length]) # Truncate the question if longer than 512 tokens
|
| 311 |
.map('vec', 'vec', ops.text_embedding.dpr(model_name='facebook/dpr-ctx_encoder-single-nq-base'))
|
| 312 |
.map('vec', 'vec', lambda x: x / np.linalg.norm(x, axis=0))
|
| 313 |
+
.map('vec', 'res', ops.ann_search.milvus_client(**milvus_args))
|
| 314 |
.map('res', 'answer', lambda x: [id_answer[int(i[0])] for i in x])
|
| 315 |
.output('question', 'answer')
|
| 316 |
)
|