File size: 10,116 Bytes
ac8f97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61245
ac8f97a
 
 
 
 
 
79f4f40
ac8f97a
 
b524f8f
ac8f97a
783bc7f
 
ac8f97a
 
 
 
 
b524f8f
 
 
 
 
 
 
 
 
 
 
96ba8aa
b524f8f
 
 
 
ac8f97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61245
ac8f97a
 
3a61245
ac8f97a
 
 
 
 
 
b524f8f
ac8f97a
b524f8f
 
ac8f97a
 
 
 
 
 
 
 
 
b524f8f
ac8f97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b524f8f
ac8f97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b524f8f
ac8f97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import spaces
import gradio as gr
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageFilter
import numpy as np
# from gradio.sketch.run import create

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
    "Lustify Lightning": "GraydientPlatformAPI/lustify-lightning",
    "Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning",
    "Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S",
    "SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
}

# --- ControlNet and Pipeline Setup (Retained) ---
config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
print(pipe)

def load_default_pipeline():
    """仅保留,但当前 Inpaint 逻辑未直接使用,可以删除,但保留以防将来扩展。"""
    global pipe
    pipe = StableDiffusionXLFillPipeline.from_pretrained(
        "GraydientPlatformAPI/lustify-lightning",
        torch_dtype=torch.float16,
        vae=vae,
        controlnet=model,
    ).to("cuda")
    print("Default pipeline loaded!")

@spaces.GPU(duration=15)
def fill_image(prompt, image, model_selection, paste_back):
    """
    Handles the fill/repair process for inputs from ImageMask (gr. ImageMask). Applies a default 5% expansion to user-drawn masks here.
    """
    global pipe

    print(f"Received image: {image}")
    if image is None:
        yield None, None
        return

    if model_selection in MODELS:
        current_model = pipe.config.get("_name_or_path", "")
        target_model = MODELS[model_selection]
        if current_model != target_model:
            # 释放旧模型显存
            del pipe
            torch.cuda.empty_cache()
            pipe = StableDiffusionXLFillPipeline.from_pretrained(
                target_model,
                torch_dtype=torch.float16,
                vae=vae,
                controlnet=model
            )
            pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")
            print(f"Loaded new SDXL model: {target_model}")

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(prompt, "cuda", True)
    source = image["background"]
    # 用户绘制的 mask layer(通常是 RGBA)
    mask = image["layers"][0]
    # 取 alpha 通道并转为二值 mask(255 表示 mask 区域)
    alpha_channel = mask.split()[3]
    binary_mask = alpha_channel.point(lambda p: 255 if p > 0 else 0).convert("L")

    # ==== 扩大 5%(针对 fill_image 的二值 mask) ====
    expand_px = max(1, int(min(binary_mask.width, binary_mask.height) * 0.05))
    kernel_size = expand_px * 2 + 1
    binary_mask = binary_mask.filter(ImageFilter.MaxFilter(kernel_size))
    # ==== END 扩大 ====

    cnet_image = source.copy()
    # 在控制网络输入图上把 mask 区域填黑(以便 ControlNet/pipe 根据此区域生成)
    cnet_image.paste(0, (0, 0), binary_mask)

    # 调用管线(通常是生成若干中间结果,这里按原逻辑 yield)
    for image_out in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
        # Inpaint 流程使用 image=cnet_image(原图 masked with black),
        # 管道内部应该处理了 mask,但如果 StableDiffusionXLFillPipeline 
        # 需要显式 mask,这里可能需要调整。根据原代码的命名和逻辑,
        # 假定 pipe(image=cnet_image) 适用于此填充流程。
    ):
        yield image_out, cnet_image # 这里的 yield 是为了流式输出

    print(f"{model_selection=}")
    print(f"{paste_back=}")
    # 最后 paste 回原图(如用户选择)
    if paste_back:
        # image_out 是生成的修复部分
        # cnet_image 在循环中已被用作 ControlNet 输入图(黑块版)
        # 这里的 cnet_image 应该更新为 source.copy() 以避免和输入混淆,
        # 但遵循原代码逻辑,使用 image_out + source/binary_mask
        
        # 最终结果是 image_out(修复结果),我们将其粘贴回原图 source 
        # 的非 mask 区域(即只替换 mask 区域)
        final_output = source.copy()
        image_out_rgba = image_out.convert("RGBA")
        # 使用二值 mask 的反转作为 paste 的 mask
        inverted_mask = binary_mask.point(lambda p: 255 if p == 0 else 0).convert("L")
        
        # 将 image_out 粘贴到 final_output 中,仅在 binary_mask 为 255 的区域(即修复区域)
        final_output.paste(image_out_rgba, (0, 0), binary_mask)
        
        yield cnet_image, final_output
    else:
        # 如果不 paste back,只返回生成的修复图像
        yield cnet_image, image_out

def clear_result():
    return gr.update(value=None)

def use_output_as_input(output_image):
    """
    Receives the output of ImageSlider (image_out, cnet_image) and returns cnet_image as the new input.
    """

    return gr.update(value=output_image[0])

css = """
.nulgradio-container {
    width: 86vw !important;
}
.nulcontain {
    overflow-y: scroll !important;
    padding: 10px 40px !important;
}
div#component-17 {
    height: auto !important;
}

@media screen and (max-width: 600px) {
    .img-row{
        display: block !important;
        margin-bottom: 20px !important;
    }
}

"""

title = """<h1 align="center">Diffusers Image Inpaint</h1>
<div align="center">Upload an image, draw a mask, and enter a prompt to repair/inpaint the masked area.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <p style="display: flex;gap: 6px;">
         <a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
        </a> to skip the queue and enjoy faster inference on the GPU of your choice
    </p>
</div>
"""

with gr.Blocks(css=css, fill_height=True) as demo:
    gr.Markdown(title)
    
    with gr.Column():
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    info="Describe what to inpaint the mask with",
                    lines=3,
                )
            with gr.Column():
                model_selection = gr.Dropdown(
                    choices=list(MODELS.keys()),
                    value="RealVisXL V5.0 Lightning",
                    label="Model",
                )
                with gr.Row():
                    run_button = gr.Button("Generate")
                    paste_back = gr.Checkbox(True, label="Paste back original")
        with gr.Row(equal_height=False):
            input_image = gr.ImageMask(
                type="pil", label="Input Image", layers=True, elem_classes="img-row"
            )
            result = ImageSlider(
                interactive=False,
                label="Generated Image", 
                elem_classes="img-row"
            )
        use_as_input_button = gr.Button("Use as Input Image", visible=False)
        
        # --- Event Handlers for Inpaint ---
        use_as_input_button.click(
            fn=use_output_as_input, 
            inputs=[result], 
            outputs=[input_image],
            queue=False
        )
        
        # Generates image on button click
        run_button.click(
            fn=clear_result,
            inputs=None,
            outputs=result,
            queue=False,
        ).then(
            fn=lambda: gr.update(visible=False),
            inputs=None,
            outputs=use_as_input_button,
            queue=False,
        ).then(
            fn=fill_image,
            inputs=[prompt, input_image, model_selection, paste_back],
            outputs=[result],
        ).then(
            fn=lambda: gr.update(visible=True),
            inputs=None,
            outputs=use_as_input_button,
            queue=False,
        )
        
        # Generates image on prompt submit
        prompt.submit(
            fn=clear_result,
            inputs=None,
            outputs=result,
            queue=False,
        ).then(
            fn=lambda: gr.update(visible=False),
            inputs=None,
            outputs=use_as_input_button,
            queue=False,
        ).then(
            fn=fill_image,
            inputs=[prompt, input_image, model_selection, paste_back],
            outputs=[result],
        ).then(
            fn=lambda: gr.update(visible=True),
            inputs=None,
            outputs=use_as_input_button,
            queue=False,
        )

demo.queue(max_size=10).launch(show_error=True)