Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,116 Bytes
ac8f97a 3a61245 ac8f97a 79f4f40 ac8f97a b524f8f ac8f97a 783bc7f ac8f97a b524f8f 96ba8aa b524f8f ac8f97a 3a61245 ac8f97a 3a61245 ac8f97a b524f8f ac8f97a b524f8f ac8f97a b524f8f ac8f97a b524f8f ac8f97a b524f8f ac8f97a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import spaces
import gradio as gr
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageFilter
import numpy as np
# from gradio.sketch.run import create
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
"Lustify Lightning": "GraydientPlatformAPI/lustify-lightning",
"Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning",
"Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S",
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
}
# --- ControlNet and Pipeline Setup (Retained) ---
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
print(pipe)
def load_default_pipeline():
"""仅保留,但当前 Inpaint 逻辑未直接使用,可以删除,但保留以防将来扩展。"""
global pipe
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"GraydientPlatformAPI/lustify-lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
).to("cuda")
print("Default pipeline loaded!")
@spaces.GPU(duration=15)
def fill_image(prompt, image, model_selection, paste_back):
"""
Handles the fill/repair process for inputs from ImageMask (gr. ImageMask). Applies a default 5% expansion to user-drawn masks here.
"""
global pipe
print(f"Received image: {image}")
if image is None:
yield None, None
return
if model_selection in MODELS:
current_model = pipe.config.get("_name_or_path", "")
target_model = MODELS[model_selection]
if current_model != target_model:
# 释放旧模型显存
del pipe
torch.cuda.empty_cache()
pipe = StableDiffusionXLFillPipeline.from_pretrained(
target_model,
torch_dtype=torch.float16,
vae=vae,
controlnet=model
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
print(f"Loaded new SDXL model: {target_model}")
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)
source = image["background"]
# 用户绘制的 mask layer(通常是 RGBA)
mask = image["layers"][0]
# 取 alpha 通道并转为二值 mask(255 表示 mask 区域)
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: 255 if p > 0 else 0).convert("L")
# ==== 扩大 5%(针对 fill_image 的二值 mask) ====
expand_px = max(1, int(min(binary_mask.width, binary_mask.height) * 0.05))
kernel_size = expand_px * 2 + 1
binary_mask = binary_mask.filter(ImageFilter.MaxFilter(kernel_size))
# ==== END 扩大 ====
cnet_image = source.copy()
# 在控制网络输入图上把 mask 区域填黑(以便 ControlNet/pipe 根据此区域生成)
cnet_image.paste(0, (0, 0), binary_mask)
# 调用管线(通常是生成若干中间结果,这里按原逻辑 yield)
for image_out in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
# Inpaint 流程使用 image=cnet_image(原图 masked with black),
# 管道内部应该处理了 mask,但如果 StableDiffusionXLFillPipeline
# 需要显式 mask,这里可能需要调整。根据原代码的命名和逻辑,
# 假定 pipe(image=cnet_image) 适用于此填充流程。
):
yield image_out, cnet_image # 这里的 yield 是为了流式输出
print(f"{model_selection=}")
print(f"{paste_back=}")
# 最后 paste 回原图(如用户选择)
if paste_back:
# image_out 是生成的修复部分
# cnet_image 在循环中已被用作 ControlNet 输入图(黑块版)
# 这里的 cnet_image 应该更新为 source.copy() 以避免和输入混淆,
# 但遵循原代码逻辑,使用 image_out + source/binary_mask
# 最终结果是 image_out(修复结果),我们将其粘贴回原图 source
# 的非 mask 区域(即只替换 mask 区域)
final_output = source.copy()
image_out_rgba = image_out.convert("RGBA")
# 使用二值 mask 的反转作为 paste 的 mask
inverted_mask = binary_mask.point(lambda p: 255 if p == 0 else 0).convert("L")
# 将 image_out 粘贴到 final_output 中,仅在 binary_mask 为 255 的区域(即修复区域)
final_output.paste(image_out_rgba, (0, 0), binary_mask)
yield cnet_image, final_output
else:
# 如果不 paste back,只返回生成的修复图像
yield cnet_image, image_out
def clear_result():
return gr.update(value=None)
def use_output_as_input(output_image):
"""
Receives the output of ImageSlider (image_out, cnet_image) and returns cnet_image as the new input.
"""
return gr.update(value=output_image[0])
css = """
.nulgradio-container {
width: 86vw !important;
}
.nulcontain {
overflow-y: scroll !important;
padding: 10px 40px !important;
}
div#component-17 {
height: auto !important;
}
@media screen and (max-width: 600px) {
.img-row{
display: block !important;
margin-bottom: 20px !important;
}
}
"""
title = """<h1 align="center">Diffusers Image Inpaint</h1>
<div align="center">Upload an image, draw a mask, and enter a prompt to repair/inpaint the masked area.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
"""
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown(title)
with gr.Column():
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe what to inpaint the mask with",
lines=3,
)
with gr.Column():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
)
with gr.Row():
run_button = gr.Button("Generate")
paste_back = gr.Checkbox(True, label="Paste back original")
with gr.Row(equal_height=False):
input_image = gr.ImageMask(
type="pil", label="Input Image", layers=True, elem_classes="img-row"
)
result = ImageSlider(
interactive=False,
label="Generated Image",
elem_classes="img-row"
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
# --- Event Handlers for Inpaint ---
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_image],
queue=False
)
# Generates image on button click
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
queue=False,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
queue=False,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=[result],
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
queue=False,
)
# Generates image on prompt submit
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
queue=False,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
queue=False,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=[result],
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
queue=False,
)
demo.queue(max_size=10).launch(show_error=True)
|