Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/LPX55/rest-api-with-gradio
Browse files
README.md
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
license:
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Dynamic Space Loading
|
|
@@ -64,4 +65,209 @@ license: openrail
|
|
| 64 |
|
| 65 |
---
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Dynamic Tab Loading Examples
|
| 3 |
+
emoji: 🏢
|
| 4 |
colorFrom: blue
|
| 5 |
+
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Exploring different loading methods for a HF Space
|
| 12 |
---
|
| 13 |
|
| 14 |
# Dynamic Space Loading
|
|
|
|
| 65 |
|
| 66 |
---
|
| 67 |
|
| 68 |
+
This is a very insightful and advanced question! Here’s a breakdown of what’s possible, what’s not, and what’s practical with Gradio, Hugging Face Spaces, and Python environments:
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
## 2. **GPU Spaces (transformers/diffusers) Loading/Unloading**
|
| 73 |
+
|
| 74 |
+
### **A. In a Single Python Process (One Space, One App)**
|
| 75 |
+
- **You can load multiple models/pipelines in one Gradio app.**
|
| 76 |
+
- You can have a dropdown or tabs to select which model/task/pipeline to use.
|
| 77 |
+
- You can load/unload models on demand (though loading large models is slow).
|
| 78 |
+
- You can keep all models in memory (if you have enough GPU RAM), or load/unload as needed.
|
| 79 |
+
- **You cannot have truly separate environments** (e.g., different Python dependencies, CUDA versions, or isolated memory) in a single Space.
|
| 80 |
+
- All code runs in the same Python process/environment.
|
| 81 |
+
- All models share the same GPU/CPU memory pool.
|
| 82 |
+
|
| 83 |
+
#### **Example:**
|
| 84 |
+
```python
|
| 85 |
+
from transformers import pipeline
|
| 86 |
+
import gradio as gr
|
| 87 |
+
|
| 88 |
+
# Preload or lazy-load multiple pipelines
|
| 89 |
+
pipe1 = pipeline("text-generation", model="gpt2")
|
| 90 |
+
pipe2 = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 91 |
+
|
| 92 |
+
def run_model(input, model_choice):
|
| 93 |
+
if model_choice == "Text Generation":
|
| 94 |
+
return pipe1(input)
|
| 95 |
+
elif model_choice == "Image Classification":
|
| 96 |
+
return pipe2(input)
|
| 97 |
+
# ... more models
|
| 98 |
+
|
| 99 |
+
gr.Interface(
|
| 100 |
+
fn=run_model,
|
| 101 |
+
inputs=[gr.Textbox(), gr.Dropdown(["Text Generation", "Image Classification"])],
|
| 102 |
+
outputs="auto"
|
| 103 |
+
).launch()
|
| 104 |
+
```
|
| 105 |
+
- You can use tabs or dropdowns to switch between models/tasks.
|
| 106 |
+
|
| 107 |
+
---
|
| 108 |
+
|
| 109 |
+
### **B. Multiple Gradio Apps in One Space**
|
| 110 |
+
- You can define multiple Gradio interfaces in one script and show/hide them with tabs or dropdowns.
|
| 111 |
+
- **But:** They still share the same Python process and memory.
|
| 112 |
+
|
| 113 |
+
---
|
| 114 |
+
|
| 115 |
+
### **C. True Isolation (Multiple Environments)**
|
| 116 |
+
- **Not possible in a single Hugging Face Space.**
|
| 117 |
+
- You cannot have multiple Python environments, different dependency sets, or isolated GPU memory pools in one Space.
|
| 118 |
+
- Each Space is a single container/process.
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
### **D. What About Docker or Subprocesses?**
|
| 123 |
+
- Hugging Face Spaces (hosted) do not support running multiple containers or true subprocess isolation with different environments.
|
| 124 |
+
- On your own infrastructure, you could use Docker or subprocesses, but this is not supported on Spaces.
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
+
|
| 128 |
+
## 3. **Best Practices for Multi-Model/Multi-Task Apps**
|
| 129 |
+
|
| 130 |
+
- **Lazy-load models:** Only load a model when its tab is selected, and unload it when switching (if memory is a concern).
|
| 131 |
+
- **Use a single environment:** Install all dependencies needed for all models in your `requirements.txt`.
|
| 132 |
+
- **Warn users about memory:** If users switch between large models, GPU memory may fill up and require manual cleanup (e.g., `torch.cuda.empty_cache()`).
|
| 133 |
+
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
## 4. **Summary Table**
|
| 137 |
+
|
| 138 |
+
| Approach | Isolation | Multiple Models | Multiple Envs | GPU Sharing | Supported on Spaces |
|
| 139 |
+
|----------------------------------|:---------:|:--------------:|:-------------:|:-----------:|:------------------:|
|
| 140 |
+
| Single Gradio app, many models | No | Yes | No | Yes | Yes |
|
| 141 |
+
| Multiple Gradio apps in one file | No | Yes | No | Yes | Yes |
|
| 142 |
+
| Multiple Spaces (one per app) | Yes | Yes | Yes | Isolated | Yes |
|
| 143 |
+
| Docker/subprocess isolation | Yes | Yes | Yes | Isolated | No (on Spaces) |
|
| 144 |
+
|
| 145 |
+
---
|
| 146 |
+
|
| 147 |
+
## 4. **What’s Practical?**
|
| 148 |
+
|
| 149 |
+
- **For most use cases:**
|
| 150 |
+
- Use a single app with tabs/dropdowns to select the model/task.
|
| 151 |
+
- Lazy-load and unload models as needed to manage memory.
|
| 152 |
+
- **For true isolation:**
|
| 153 |
+
- Use multiple Spaces (one per app/model) or host your own infrastructure with Docker.
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
|
| 157 |
+
## 5. **Properly Unloading Models, Weights, and Freeing Memory in PyTorch/Diffusers**
|
| 158 |
+
|
| 159 |
+
When working with large models (especially on GPU), it's important to:
|
| 160 |
+
- **Delete references to the model and pipeline**
|
| 161 |
+
- **Call `gc.collect()`** to trigger Python's garbage collector
|
| 162 |
+
- **Call `torch.cuda.empty_cache()`** (if using CUDA) to free GPU memory
|
| 163 |
+
|
| 164 |
+
### **Best Practice Pattern**
|
| 165 |
+
|
| 166 |
+
Here’s a robust pattern for loading and unloading models in a multi-model Gradio app:
|
| 167 |
+
|
| 168 |
+
```python
|
| 169 |
+
import torch
|
| 170 |
+
import gc
|
| 171 |
+
from diffusers import DiffusionPipeline
|
| 172 |
+
|
| 173 |
+
model_cache = {}
|
| 174 |
+
|
| 175 |
+
def load_diffusion_model(model_id, dtype=torch.float32, device="cpu"):
|
| 176 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
|
| 177 |
+
pipe = pipe.to(device)
|
| 178 |
+
pipe.enable_attention_slicing()
|
| 179 |
+
return pipe
|
| 180 |
+
|
| 181 |
+
def unload_model(model_key):
|
| 182 |
+
# Remove from cache
|
| 183 |
+
if model_key in model_cache:
|
| 184 |
+
del model_cache[model_key]
|
| 185 |
+
# Run Python garbage collection
|
| 186 |
+
gc.collect()
|
| 187 |
+
# Free GPU memory if using CUDA
|
| 188 |
+
if torch.cuda.is_available():
|
| 189 |
+
torch.cuda.empty_cache()
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
### **How to Use in a Gradio Tab**
|
| 193 |
+
|
| 194 |
+
```python
|
| 195 |
+
import gradio as gr
|
| 196 |
+
|
| 197 |
+
model_id = "LPX55/FLUX.1-merged_lightning_v2"
|
| 198 |
+
model_key = "flux"
|
| 199 |
+
device = "cpu" # or "cuda" if available and desired
|
| 200 |
+
|
| 201 |
+
def do_load():
|
| 202 |
+
if model_key not in model_cache:
|
| 203 |
+
model_cache[model_key] = load_diffusion_model(model_id, torch.float32, device)
|
| 204 |
+
return "Model loaded!"
|
| 205 |
+
|
| 206 |
+
def do_unload():
|
| 207 |
+
unload_model(model_key)
|
| 208 |
+
return "Model unloaded!"
|
| 209 |
+
|
| 210 |
+
def run_inference(prompt, width, height, steps):
|
| 211 |
+
if model_key not in model_cache:
|
| 212 |
+
return None, "Model not loaded!"
|
| 213 |
+
pipe = model_cache[model_key]
|
| 214 |
+
image = pipe(
|
| 215 |
+
prompt=prompt,
|
| 216 |
+
width=width,
|
| 217 |
+
height=height,
|
| 218 |
+
num_inference_steps=steps,
|
| 219 |
+
).images[0]
|
| 220 |
+
return image, "Success!"
|
| 221 |
+
|
| 222 |
+
with gr.Blocks() as demo:
|
| 223 |
+
status = gr.Markdown("Model not loaded.")
|
| 224 |
+
load_btn = gr.Button("Load Model")
|
| 225 |
+
unload_btn = gr.Button("Unload Model")
|
| 226 |
+
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
|
| 227 |
+
width = gr.Slider(256, 1536, value=768, step=64, label="Width")
|
| 228 |
+
height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
|
| 229 |
+
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
|
| 230 |
+
run_btn = gr.Button("Generate Image")
|
| 231 |
+
output_img = gr.Image(label="Output Image")
|
| 232 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 233 |
+
|
| 234 |
+
load_btn.click(do_load, None, status)
|
| 235 |
+
unload_btn.click(do_unload, None, status)
|
| 236 |
+
run_btn.click(run_inference, [prompt, width, height, steps], [output_img, output_msg])
|
| 237 |
+
|
| 238 |
+
demo.launch()
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
---
|
| 242 |
+
|
| 243 |
+
### **Key Points**
|
| 244 |
+
- **Always delete the model from your cache/dictionary.**
|
| 245 |
+
- **Call `gc.collect()` after deleting the model.**
|
| 246 |
+
- **Call `torch.cuda.empty_cache()` if using CUDA.**
|
| 247 |
+
- **Do this every time you switch models or want to free memory.**
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
|
| 251 |
+
### **Advanced: Unloading All Models**
|
| 252 |
+
|
| 253 |
+
If you want to ensure all models are unloaded (e.g., when switching tabs):
|
| 254 |
+
|
| 255 |
+
```python
|
| 256 |
+
def unload_all_models():
|
| 257 |
+
model_cache.clear()
|
| 258 |
+
gc.collect()
|
| 259 |
+
if torch.cuda.is_available():
|
| 260 |
+
torch.cuda.empty_cache()
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
---
|
| 264 |
+
|
| 265 |
+
### **Summary Table**
|
| 266 |
+
|
| 267 |
+
| Step | CPU | GPU (CUDA) |
|
| 268 |
+
|---------------------|-----|------------|
|
| 269 |
+
| Delete model object | ✅ | ✅ |
|
| 270 |
+
| `gc.collect()` | ✅ | ✅ |
|
| 271 |
+
| `torch.cuda.empty_cache()` | ❌ | ✅ |
|
| 272 |
+
|
| 273 |
+
---
|