Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,50 +3,114 @@ import streamlit as st
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
# function part
|
| 9 |
def generate_image_caption(image):
|
| 10 |
-
"""Generates a caption for the given image using a pre-trained model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 12 |
result = img2caption(image)
|
| 13 |
return result[0]['generated_text']
|
| 14 |
|
| 15 |
def text2story(text):
|
| 16 |
-
"""Generates a children's story from text input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
story_prompt = f"Create a funny 100-word story for 8-year-olds about: {text}. Include: "
|
| 18 |
story_prompt += "1) A silly character 2) Magical object 3) Sound effects 4) Happy ending"
|
| 19 |
|
|
|
|
| 20 |
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
|
|
|
|
|
|
| 21 |
story_text = pipe(
|
| 22 |
story_prompt,
|
| 23 |
-
max_new_tokens=200,
|
| 24 |
-
temperature=0.9,
|
| 25 |
-
top_k=50
|
| 26 |
)[0]['generated_text']
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def main():
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
|
|
|
| 33 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 34 |
|
| 35 |
if uploaded_image:
|
| 36 |
-
|
| 37 |
-
|
|
|
|
| 38 |
|
|
|
|
| 39 |
with st.spinner("β¨ Analyzing image..."):
|
| 40 |
caption = generate_image_caption(image)
|
| 41 |
|
|
|
|
| 42 |
st.subheader("Image Understanding")
|
| 43 |
st.write(caption)
|
| 44 |
|
|
|
|
| 45 |
with st.spinner("π Writing story..."):
|
| 46 |
story = text2story(caption)
|
| 47 |
|
|
|
|
| 48 |
st.subheader("Magical Story")
|
| 49 |
st.write(story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
|
|
|
| 52 |
main()
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
+
import numpy as np
|
| 7 |
+
import soundfile as sf # For handling audio file operations
|
| 8 |
|
|
|
|
| 9 |
# function part
|
| 10 |
def generate_image_caption(image):
|
| 11 |
+
"""Generates a caption for the given image using a pre-trained model.
|
| 12 |
+
Args:
|
| 13 |
+
image: PIL Image object
|
| 14 |
+
Returns:
|
| 15 |
+
str: Generated caption text
|
| 16 |
+
"""
|
| 17 |
+
# Initialize image-to-text pipeline with BLIP model
|
| 18 |
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 19 |
result = img2caption(image)
|
| 20 |
return result[0]['generated_text']
|
| 21 |
|
| 22 |
def text2story(text):
|
| 23 |
+
"""Generates a children's story from text input using story generation model.
|
| 24 |
+
Args:
|
| 25 |
+
text: Input text prompt
|
| 26 |
+
Returns:
|
| 27 |
+
str: Generated story text
|
| 28 |
+
"""
|
| 29 |
+
# Craft prompt with specific requirements for children's stories
|
| 30 |
story_prompt = f"Create a funny 100-word story for 8-year-olds about: {text}. Include: "
|
| 31 |
story_prompt += "1) A silly character 2) Magical object 3) Sound effects 4) Happy ending"
|
| 32 |
|
| 33 |
+
# Initialize text generation pipeline
|
| 34 |
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
| 35 |
+
|
| 36 |
+
# Generate story with controlled randomness parameters
|
| 37 |
story_text = pipe(
|
| 38 |
story_prompt,
|
| 39 |
+
max_new_tokens=200, # Limit story length
|
| 40 |
+
temperature=0.9, # Control randomness (higher = more creative)
|
| 41 |
+
top_k=50 # Limit vocabulary choices
|
| 42 |
)[0]['generated_text']
|
| 43 |
+
|
| 44 |
+
# Clean output by splitting at the required ending marker
|
| 45 |
+
return story_text.split("Happy ending")[-1].strip()
|
| 46 |
+
|
| 47 |
+
def story_to_speech(story_text):
|
| 48 |
+
"""Converts story text to audio using text-to-speech model.
|
| 49 |
+
Args:
|
| 50 |
+
story_text: Story text to convert
|
| 51 |
+
Returns:
|
| 52 |
+
BytesIO: Audio data in WAV format
|
| 53 |
+
"""
|
| 54 |
+
# Initialize Bark text-to-speech pipeline
|
| 55 |
+
tts_pipe = pipeline("text-to-speech", model="suno/bark-small")
|
| 56 |
+
|
| 57 |
+
# Generate audio array (numpy array of sound samples)
|
| 58 |
+
audio_output = tts_pipe(story_text, max_length=400) # Limit text length for stability
|
| 59 |
+
|
| 60 |
+
# Convert numpy array to playable audio bytes
|
| 61 |
+
audio_bytes = io.BytesIO()
|
| 62 |
+
sf.write(
|
| 63 |
+
audio_bytes,
|
| 64 |
+
audio_output["audio"],
|
| 65 |
+
audio_output["sampling_rate"],
|
| 66 |
+
format='WAV'
|
| 67 |
+
)
|
| 68 |
+
audio_bytes.seek(0) # Reset pointer for Streamlit audio player
|
| 69 |
+
|
| 70 |
+
return audio_bytes
|
| 71 |
|
| 72 |
def main():
|
| 73 |
+
"""Main function for Streamlit application workflow"""
|
| 74 |
+
# Configure page header
|
| 75 |
+
st.title("π Image Story Generator with Audio")
|
| 76 |
+
st.write("Upload an image to get a magical story read aloud!")
|
| 77 |
|
| 78 |
+
# Image upload widget (supports JPG/PNG)
|
| 79 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 80 |
|
| 81 |
if uploaded_image:
|
| 82 |
+
# Process image
|
| 83 |
+
image = Image.open(uploaded_image).convert("RGB") # Ensure RGB format
|
| 84 |
+
st.image(image, use_column_width=True) # Display uploaded image
|
| 85 |
|
| 86 |
+
# Image analysis section
|
| 87 |
with st.spinner("β¨ Analyzing image..."):
|
| 88 |
caption = generate_image_caption(image)
|
| 89 |
|
| 90 |
+
# Display image understanding
|
| 91 |
st.subheader("Image Understanding")
|
| 92 |
st.write(caption)
|
| 93 |
|
| 94 |
+
# Story generation section
|
| 95 |
with st.spinner("π Writing story..."):
|
| 96 |
story = text2story(caption)
|
| 97 |
|
| 98 |
+
# Display generated story
|
| 99 |
st.subheader("Magical Story")
|
| 100 |
st.write(story)
|
| 101 |
+
|
| 102 |
+
# Audio generation section
|
| 103 |
+
if st.button("π§ Read Story Aloud"):
|
| 104 |
+
with st.spinner("π Generating audio..."):
|
| 105 |
+
try:
|
| 106 |
+
# Convert story to audio (trim to 400 characters for model stability)
|
| 107 |
+
audio_bytes = story_to_speech(story[:400])
|
| 108 |
+
|
| 109 |
+
# Display audio player
|
| 110 |
+
st.audio(audio_bytes, format="audio/wav")
|
| 111 |
+
except Exception as e:
|
| 112 |
+
st.error(f"Error generating audio: {str(e)}")
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
+
# Start the Streamlit application
|
| 116 |
main()
|