Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| # ูู ุงุฐุฌ ุฃููุฏุฉ ูู ูุชูุญุฉ | |
| models = { | |
| "CodeGen 2B": "Salesforce/codegen-2B-multi", | |
| "CodeParrot": "codeparrot/codeparrot-small", | |
| "GPT-J-6B": "EleutherAI/gpt-j-6B", | |
| "GPT2": "gpt2" # ูู ูุฐุฌ ุจุณูุท ูู fallback | |
| } | |
| # ุชุญู ูู ุงููู ุงุฐุฌ | |
| loaded_models = {} | |
| for name, model_id in models.items(): | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
| ) | |
| loaded_models[name] = (tokenizer, model) | |
| # ุฏุงูุฉ ุงูุชูููุฏ | |
| def generate_code(prompt, model_name): | |
| tokenizer, model = loaded_models[model_name] | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=150) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # ูุงุฌูุฉ Gradio | |
| demo = gr.Interface( | |
| fn=generate_code, | |
| inputs=[ | |
| gr.Textbox(lines=5, label="ุงูุชุจ ูุตู ุงูููุฏ (ุจุงูุฅูุฌููุฒูุฉ)"), | |
| gr.Radio(choices=list(models.keys()), label="ุงุฎุชุฑ ุงููู ูุฐุฌ") | |
| ], | |
| outputs=gr.Code(label="ุงูููุฏ ุงููุงุชุฌ"), | |
| title="Code Generation with Open AI Models", | |
| description="ุงุฎุชุฑ ูู ูุฐุฌูุง ู ูุชูุญูุง ูุฃุฏุฎู ูุตููุง ููุชู ุชูููุฏ ุงูููุฏ ุชููุงุฆููุง" | |
| ) | |
| demo.launch() | |