|
|
|
|
|
|
|
|
|
|
|
import os, glob, textwrap
|
|
|
from pathlib import Path
|
|
|
|
|
|
import gradio as gr
|
|
|
from huggingface_hub import snapshot_download
|
|
|
from llama_cpp import Llama
|
|
|
import requests
|
|
|
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
|
|
MODEL_REPO = os.getenv("MODEL_REPO", "Qwen/Qwen2.5-7B-Instruct-GGUF")
|
|
|
|
|
|
MODEL_PATTERN = os.getenv("MODEL_PATTERN", "qwen2.5-7b-instruct-q4_k_m-*.gguf")
|
|
|
|
|
|
LOCAL_DIR = Path("models"); LOCAL_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
print(f"[Boot] Descargando {MODEL_REPO} patrón {MODEL_PATTERN} ...")
|
|
|
snapshot_dir = snapshot_download(repo_id=MODEL_REPO, local_dir=str(LOCAL_DIR),
|
|
|
allow_patterns=[MODEL_PATTERN])
|
|
|
candidates = sorted(glob.glob(str(Path(snapshot_dir) / MODEL_PATTERN)))
|
|
|
if not candidates:
|
|
|
raise FileNotFoundError(f"No hay shards para {MODEL_PATTERN} en {snapshot_dir}")
|
|
|
MODEL_PATH = candidates[0]
|
|
|
print(f"[Boot] Usando shard: {MODEL_PATH}")
|
|
|
|
|
|
N_THREADS = max(1, (os.cpu_count() or 2) - 1)
|
|
|
|
|
|
llm = Llama(
|
|
|
model_path=MODEL_PATH,
|
|
|
n_ctx=4096,
|
|
|
n_threads=N_THREADS,
|
|
|
n_batch=256,
|
|
|
n_gpu_layers=0,
|
|
|
verbose=False,
|
|
|
)
|
|
|
|
|
|
SYSTEM_DEFAULT = textwrap.dedent("""\
|
|
|
Eres Astrohunters-Guide, un asistente en español.
|
|
|
- Respondes con precisión y sin inventar datos.
|
|
|
- Sabes explicar resultados de exoplanetas (período, duración, profundidad, SNR, radio).
|
|
|
- Si te paso una URL, lees su contenido y lo usas como contexto.
|
|
|
""")
|
|
|
|
|
|
def fetch_url_text(url: str, max_chars: int = 6000) -> str:
|
|
|
try:
|
|
|
r = requests.get(url, timeout=15)
|
|
|
r.raise_for_status()
|
|
|
soup = BeautifulSoup(r.text, "html.parser")
|
|
|
for t in soup(["script", "style", "noscript"]): t.decompose()
|
|
|
txt = " ".join(soup.get_text(separator=" ").split())
|
|
|
return txt[:max_chars]
|
|
|
except Exception as e:
|
|
|
return f"[No se pudo cargar {url}: {e}]"
|
|
|
|
|
|
def run_llm(messages, temperature=0.6, top_p=0.95, max_tokens=768):
|
|
|
out = llm.create_chat_completion(
|
|
|
messages=messages,
|
|
|
temperature=temperature,
|
|
|
top_p=top_p,
|
|
|
max_tokens=max_tokens,
|
|
|
stream=False,
|
|
|
)
|
|
|
return out["choices"][0]["message"]["content"].strip()
|
|
|
|
|
|
|
|
|
def api_run_predict(prompt: str, system: str = "") -> str:
|
|
|
messages = [
|
|
|
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
|
|
{"role": "user", "content": prompt},
|
|
|
]
|
|
|
return run_llm(messages, max_tokens=512)
|
|
|
|
|
|
def api_run_predict_with_url(prompt: str, url: str = "", system: str = "") -> str:
|
|
|
web_ctx = fetch_url_text(url) if url else ""
|
|
|
user_msg = prompt if not web_ctx else f"{prompt}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
|
|
messages = [
|
|
|
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
|
|
{"role": "user", "content": user_msg},
|
|
|
]
|
|
|
return run_llm(messages, max_tokens=700)
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="Astrohunters LLM (Qwen2.5 7B)") as chat_ui:
|
|
|
gr.Markdown("## 🛰️ Astrohunters LLM (Qwen2.5 7B Instruct, GGUF — CPU Basic)")
|
|
|
with gr.Row():
|
|
|
with gr.Column(scale=3):
|
|
|
chat = gr.Chatbot(height=420, type="tuples")
|
|
|
with gr.Row():
|
|
|
txt = gr.Textbox(placeholder="Escribe tu pregunta...", scale=4)
|
|
|
btn = gr.Button("Enviar", scale=1, variant="primary")
|
|
|
with gr.Column(scale=2):
|
|
|
system_tb = gr.Textbox(label="System prompt", value=SYSTEM_DEFAULT, lines=10)
|
|
|
url_tb = gr.Textbox(label="URL (opcional): Cargar contenido web", placeholder="https://...")
|
|
|
|
|
|
def chat_infer(history, system_prompt, user, url_to_load):
|
|
|
web_ctx = fetch_url_text(url_to_load.strip()) if url_to_load and url_to_load.strip() else ""
|
|
|
messages = [{"role": "system", "content": system_prompt or SYSTEM_DEFAULT}]
|
|
|
for u, a in history:
|
|
|
if u: messages.append({"role": "user", "content": u})
|
|
|
if a: messages.append({"role": "assistant", "content": a})
|
|
|
user_msg = user or ""
|
|
|
if web_ctx:
|
|
|
user_msg = f"{user_msg}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
|
|
messages.append({"role": "user", "content": user_msg})
|
|
|
reply = run_llm(messages, max_tokens=700)
|
|
|
history.append((user, reply))
|
|
|
return history, ""
|
|
|
|
|
|
btn.click(chat_infer, inputs=[chat, system_tb, txt, url_tb], outputs=[chat, txt])
|
|
|
txt.submit(chat_infer, inputs=[chat, system_tb, txt, url_tb], outputs=[chat, txt])
|
|
|
|
|
|
|
|
|
api1 = gr.Interface(
|
|
|
fn=api_run_predict,
|
|
|
inputs=[gr.Textbox(label="prompt"), gr.Textbox(label="system")],
|
|
|
outputs=gr.Textbox(label="reply"),
|
|
|
api_name="run_predict",
|
|
|
)
|
|
|
|
|
|
api2 = gr.Interface(
|
|
|
fn=api_run_predict_with_url,
|
|
|
inputs=[gr.Textbox(label="prompt"), gr.Textbox(label="url"), gr.Textbox(label="system")],
|
|
|
outputs=gr.Textbox(label="reply"),
|
|
|
api_name="run_predict_with_url",
|
|
|
)
|
|
|
|
|
|
|
|
|
demo = gr.TabbedInterface(
|
|
|
[chat_ui, api1, api2],
|
|
|
tab_names=["Chat", "API: run_predict", "API: run_predict_with_url"],
|
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
demo.queue(max_size=16).launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|