Update app.py
Browse files
app.py
CHANGED
|
@@ -3,41 +3,58 @@
|
|
| 3 |
|
| 4 |
import os, glob, textwrap
|
| 5 |
from pathlib import Path
|
| 6 |
-
from
|
| 7 |
|
| 8 |
-
from fastapi import FastAPI
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
-
from
|
| 11 |
|
| 12 |
-
from huggingface_hub import snapshot_download
|
| 13 |
-
from llama_cpp import Llama
|
| 14 |
import requests
|
| 15 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
MODELS_DIR.mkdir(parents=True, exist_ok=True)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
print(f"[Boot] Descargando {MODEL_REPO} patrón {MODEL_PATTERN} en {MODELS_DIR} ...")
|
| 27 |
snapshot_dir = snapshot_download(
|
| 28 |
repo_id=MODEL_REPO,
|
| 29 |
local_dir=str(MODELS_DIR),
|
| 30 |
allow_patterns=[MODEL_PATTERN],
|
| 31 |
)
|
| 32 |
-
candidates = sorted(glob.glob(str(
|
| 33 |
if not candidates:
|
| 34 |
raise FileNotFoundError(f"No hay shards para {MODEL_PATTERN} en {snapshot_dir}")
|
| 35 |
MODEL_PATH = candidates[0]
|
| 36 |
print(f"[Boot] Usando shard: {MODEL_PATH}")
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
N_THREADS = max(1, (os.cpu_count() or 2) - 1)
|
| 40 |
-
|
| 41 |
llm = Llama(
|
| 42 |
model_path=MODEL_PATH,
|
| 43 |
n_ctx=4096,
|
|
@@ -46,101 +63,81 @@ llm = Llama(
|
|
| 46 |
n_gpu_layers=0,
|
| 47 |
verbose=False,
|
| 48 |
)
|
| 49 |
-
_llm_lock = Lock()
|
| 50 |
-
|
| 51 |
-
SYSTEM_DEFAULT = textwrap.dedent("""\
|
| 52 |
-
Eres Astrohunters-Guide, un asistente en español.
|
| 53 |
-
- Respondes con precisión y sin inventar datos.
|
| 54 |
-
- Sabes explicar resultados de exoplanetas (período, duración, profundidad, SNR, radio).
|
| 55 |
-
- Si te paso una URL, lees su contenido y lo usas como contexto.
|
| 56 |
-
""")
|
| 57 |
|
| 58 |
def fetch_url_text(url: str, max_chars: int = 6000) -> str:
|
| 59 |
try:
|
| 60 |
r = requests.get(url, timeout=15)
|
| 61 |
r.raise_for_status()
|
| 62 |
soup = BeautifulSoup(r.text, "html.parser")
|
| 63 |
-
for t in soup(["script", "style", "noscript"]):
|
|
|
|
| 64 |
txt = " ".join(soup.get_text(separator=" ").split())
|
| 65 |
return txt[:max_chars]
|
| 66 |
except Exception as e:
|
| 67 |
return f"[No se pudo cargar {url}: {e}]"
|
| 68 |
|
| 69 |
def run_llm(messages, temperature=0.6, top_p=0.95, max_tokens=768) -> str:
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
)
|
| 78 |
return out["choices"][0]["message"]["content"].strip()
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
app = FastAPI(title="Astrohunters LLM API",
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
@app.get("/healthz")
|
| 94 |
def healthz():
|
| 95 |
-
return {"ok": True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
@app.post("/run_predict")
|
| 98 |
-
def run_predict(body:
|
| 99 |
-
prompt = body.get("prompt", "")
|
| 100 |
-
system = body.get("system", "")
|
| 101 |
messages = [
|
| 102 |
-
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 103 |
-
{"role": "user", "content": prompt},
|
| 104 |
]
|
| 105 |
reply = run_llm(messages, max_tokens=512)
|
| 106 |
return {"reply": reply}
|
| 107 |
|
| 108 |
@app.post("/run_predict_with_url")
|
| 109 |
-
def run_predict_with_url(body:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
system = body.get("system", "")
|
| 113 |
-
web_ctx = fetch_url_text(url) if url else ""
|
| 114 |
-
user_msg = prompt if not web_ctx else f"{prompt}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
| 115 |
messages = [
|
| 116 |
-
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 117 |
{"role": "user", "content": user_msg},
|
| 118 |
]
|
| 119 |
reply = run_llm(messages, max_tokens=700)
|
| 120 |
return {"reply": reply}
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
return """
|
| 126 |
-
<!doctype html>
|
| 127 |
-
<html>
|
| 128 |
-
<head><meta charset="utf-8"><title>Astrohunters LLM API</title></head>
|
| 129 |
-
<body style="font-family:system-ui;max-width:800px;margin:40px auto">
|
| 130 |
-
<h2>🛰️ Astrohunters LLM API</h2>
|
| 131 |
-
<p>Endpoints: <code>/healthz</code>, <code>/run_predict</code>, <code>/run_predict_with_url</code>, y <a href="/docs">/docs</a> (Swagger).</p>
|
| 132 |
-
<textarea id="q" rows="4" style="width:100%" placeholder="Escribe tu pregunta..."></textarea>
|
| 133 |
-
<button id="btn">Preguntar</button>
|
| 134 |
-
<pre id="out"></pre>
|
| 135 |
-
<script>
|
| 136 |
-
document.getElementById('btn').onclick = async () => {
|
| 137 |
-
const r = await fetch('/run_predict', {
|
| 138 |
-
method:'POST', headers:{'Content-Type':'application/json'},
|
| 139 |
-
body: JSON.stringify({prompt: document.getElementById('q').value})
|
| 140 |
-
});
|
| 141 |
-
const j = await r.json();
|
| 142 |
-
document.getElementById('out').textContent = j.reply || JSON.stringify(j,null,2);
|
| 143 |
-
};
|
| 144 |
-
</script>
|
| 145 |
-
</body></html>
|
| 146 |
-
"""
|
|
|
|
| 3 |
|
| 4 |
import os, glob, textwrap
|
| 5 |
from pathlib import Path
|
| 6 |
+
from typing import Optional
|
| 7 |
|
| 8 |
+
from fastapi import FastAPI
|
| 9 |
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
from pydantic import BaseModel
|
| 11 |
|
|
|
|
|
|
|
| 12 |
import requests
|
| 13 |
from bs4 import BeautifulSoup
|
| 14 |
+
from huggingface_hub import snapshot_download
|
| 15 |
+
from llama_cpp import Llama
|
| 16 |
|
| 17 |
+
# ------------------ Config ------------------
|
| 18 |
+
MODEL_REPO = os.getenv("MODEL_REPO", "Qwen/Qwen2.5-7B-Instruct-GGUF")
|
| 19 |
+
# Si te falta RAM en CPU Basic: exporta MODEL_PATTERN=qwen2.5-7b-instruct-q3_k_m-*.gguf
|
| 20 |
+
MODEL_PATTERN = os.getenv("MODEL_PATTERN", "qwen2.5-7b-instruct-q4_k_m-*.gguf")
|
| 21 |
+
|
| 22 |
+
# Carpeta de modelos en /data (escribible en Docker Spaces)
|
| 23 |
+
MODELS_DIR = Path(os.getenv("MODELS_DIR", "/data/models"))
|
| 24 |
MODELS_DIR.mkdir(parents=True, exist_ok=True)
|
| 25 |
|
| 26 |
+
N_THREADS = max(1, (os.cpu_count() or 2) - 1)
|
| 27 |
+
|
| 28 |
+
SYSTEM_DEFAULT = textwrap.dedent("""\
|
| 29 |
+
Eres Astrohunters-Guide, un asistente en español.
|
| 30 |
+
- Respondes con precisión y sin inventar datos.
|
| 31 |
+
- Sabes explicar resultados de exoplanetas (período, duración, profundidad, SNR, radio).
|
| 32 |
+
- Si te paso una URL, lees su contenido y lo usas como contexto.
|
| 33 |
+
""")
|
| 34 |
|
| 35 |
+
ALLOWED_ORIGINS = [
|
| 36 |
+
# agrega tu dominio(s) aquí
|
| 37 |
+
"https://pruebas.nataliacoronel.com",
|
| 38 |
+
"https://*.nataliacoronel.com",
|
| 39 |
+
# durante pruebas puedes permitir todo, pero es menos seguro:
|
| 40 |
+
os.getenv("ALLOW_ALL_ORIGINS", "") and "*",
|
| 41 |
+
]
|
| 42 |
+
ALLOWED_ORIGINS = [o for o in ALLOWED_ORIGINS if o]
|
| 43 |
+
|
| 44 |
+
# ------------------ Descarga del modelo ------------------
|
| 45 |
print(f"[Boot] Descargando {MODEL_REPO} patrón {MODEL_PATTERN} en {MODELS_DIR} ...")
|
| 46 |
snapshot_dir = snapshot_download(
|
| 47 |
repo_id=MODEL_REPO,
|
| 48 |
local_dir=str(MODELS_DIR),
|
| 49 |
allow_patterns=[MODEL_PATTERN],
|
| 50 |
)
|
| 51 |
+
candidates = sorted(glob.glob(str(Path(snapshot_dir) / MODEL_PATTERN)))
|
| 52 |
if not candidates:
|
| 53 |
raise FileNotFoundError(f"No hay shards para {MODEL_PATTERN} en {snapshot_dir}")
|
| 54 |
MODEL_PATH = candidates[0]
|
| 55 |
print(f"[Boot] Usando shard: {MODEL_PATH}")
|
| 56 |
|
| 57 |
+
# ------------------ Carga LLaMA.cpp ------------------
|
|
|
|
|
|
|
| 58 |
llm = Llama(
|
| 59 |
model_path=MODEL_PATH,
|
| 60 |
n_ctx=4096,
|
|
|
|
| 63 |
n_gpu_layers=0,
|
| 64 |
verbose=False,
|
| 65 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
def fetch_url_text(url: str, max_chars: int = 6000) -> str:
|
| 68 |
try:
|
| 69 |
r = requests.get(url, timeout=15)
|
| 70 |
r.raise_for_status()
|
| 71 |
soup = BeautifulSoup(r.text, "html.parser")
|
| 72 |
+
for t in soup(["script", "style", "noscript"]):
|
| 73 |
+
t.decompose()
|
| 74 |
txt = " ".join(soup.get_text(separator=" ").split())
|
| 75 |
return txt[:max_chars]
|
| 76 |
except Exception as e:
|
| 77 |
return f"[No se pudo cargar {url}: {e}]"
|
| 78 |
|
| 79 |
def run_llm(messages, temperature=0.6, top_p=0.95, max_tokens=768) -> str:
|
| 80 |
+
out = llm.create_chat_completion(
|
| 81 |
+
messages=messages,
|
| 82 |
+
temperature=temperature,
|
| 83 |
+
top_p=top_p,
|
| 84 |
+
max_tokens=max_tokens,
|
| 85 |
+
stream=False,
|
| 86 |
+
)
|
|
|
|
| 87 |
return out["choices"][0]["message"]["content"].strip()
|
| 88 |
|
| 89 |
+
# ------------------ FastAPI ------------------
|
| 90 |
+
app = FastAPI(title="Astrohunters LLM API", docs_url="/docs", redoc_url=None)
|
| 91 |
+
|
| 92 |
+
if ALLOWED_ORIGINS:
|
| 93 |
+
app.add_middleware(
|
| 94 |
+
CORSMiddleware,
|
| 95 |
+
allow_origins=ALLOWED_ORIGINS,
|
| 96 |
+
allow_credentials=True,
|
| 97 |
+
allow_methods=["*"],
|
| 98 |
+
allow_headers=["*"],
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
class PredictIn(BaseModel):
|
| 102 |
+
prompt: str
|
| 103 |
+
system: Optional[str] = None
|
| 104 |
+
|
| 105 |
+
class PredictURLIn(BaseModel):
|
| 106 |
+
prompt: str
|
| 107 |
+
url: Optional[str] = None
|
| 108 |
+
system: Optional[str] = None
|
| 109 |
|
| 110 |
@app.get("/healthz")
|
| 111 |
def healthz():
|
| 112 |
+
return {"ok": True, "model": os.path.basename(MODEL_PATH), "threads": N_THREADS}
|
| 113 |
+
|
| 114 |
+
@app.get("/")
|
| 115 |
+
def root():
|
| 116 |
+
return {
|
| 117 |
+
"name": "Astrohunters LLM API",
|
| 118 |
+
"endpoints": ["/healthz", "/run_predict", "/run_predict_with_url", "/docs"],
|
| 119 |
+
}
|
| 120 |
|
| 121 |
@app.post("/run_predict")
|
| 122 |
+
def run_predict(body: PredictIn):
|
|
|
|
|
|
|
| 123 |
messages = [
|
| 124 |
+
{"role": "system", "content": body.system or SYSTEM_DEFAULT},
|
| 125 |
+
{"role": "user", "content": body.prompt},
|
| 126 |
]
|
| 127 |
reply = run_llm(messages, max_tokens=512)
|
| 128 |
return {"reply": reply}
|
| 129 |
|
| 130 |
@app.post("/run_predict_with_url")
|
| 131 |
+
def run_predict_with_url(body: PredictURLIn):
|
| 132 |
+
web_ctx = fetch_url_text(body.url) if body.url else ""
|
| 133 |
+
user_msg = body.prompt if not web_ctx else f"{body.prompt}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
|
|
|
|
|
|
|
|
|
| 134 |
messages = [
|
| 135 |
+
{"role": "system", "content": body.system or SYSTEM_DEFAULT},
|
| 136 |
{"role": "user", "content": user_msg},
|
| 137 |
]
|
| 138 |
reply = run_llm(messages, max_tokens=700)
|
| 139 |
return {"reply": reply}
|
| 140 |
|
| 141 |
+
if __name__ == "__main__":
|
| 142 |
+
import uvicorn, os
|
| 143 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", "7860")))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|