Update app.py
Browse files
app.py
CHANGED
|
@@ -3,25 +3,24 @@
|
|
| 3 |
|
| 4 |
import os, glob, textwrap
|
| 5 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
import gradio as gr
|
| 8 |
from huggingface_hub import snapshot_download
|
| 9 |
from llama_cpp import Llama
|
| 10 |
import requests
|
| 11 |
from bs4 import BeautifulSoup
|
| 12 |
|
| 13 |
-
|
| 14 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 15 |
-
from gradio.routes import mount_gradio_app
|
| 16 |
-
|
| 17 |
-
# ===== Dónde guardar el modelo (NO usar /app) =====
|
| 18 |
-
# Gratis/ephemeral: /tmp/models | Persistente (si contratas storage): /data/models
|
| 19 |
MODELS_DIR = Path(os.getenv("MODELS_DIR", "/tmp/models"))
|
| 20 |
MODELS_DIR.mkdir(parents=True, exist_ok=True)
|
| 21 |
|
| 22 |
# ===== Modelo (GGUF) =====
|
| 23 |
MODEL_REPO = os.getenv("MODEL_REPO", "Qwen/Qwen2.5-7B-Instruct-GGUF")
|
| 24 |
-
#
|
| 25 |
MODEL_PATTERN = os.getenv("MODEL_PATTERN", "qwen2.5-7b-instruct-q4_k_m-*.gguf")
|
| 26 |
|
| 27 |
print(f"[Boot] Descargando {MODEL_REPO} patrón {MODEL_PATTERN} en {MODELS_DIR} ...")
|
|
@@ -47,6 +46,7 @@ llm = Llama(
|
|
| 47 |
n_gpu_layers=0,
|
| 48 |
verbose=False,
|
| 49 |
)
|
|
|
|
| 50 |
|
| 51 |
SYSTEM_DEFAULT = textwrap.dedent("""\
|
| 52 |
Eres Astrohunters-Guide, un asistente en español.
|
|
@@ -60,73 +60,29 @@ def fetch_url_text(url: str, max_chars: int = 6000) -> str:
|
|
| 60 |
r = requests.get(url, timeout=15)
|
| 61 |
r.raise_for_status()
|
| 62 |
soup = BeautifulSoup(r.text, "html.parser")
|
| 63 |
-
for t in soup(["script", "style", "noscript"]): t.
|
| 64 |
txt = " ".join(soup.get_text(separator=" ").split())
|
| 65 |
return txt[:max_chars]
|
| 66 |
except Exception as e:
|
| 67 |
return f"[No se pudo cargar {url}: {e}]"
|
| 68 |
|
| 69 |
-
def run_llm(messages, temperature=0.6, top_p=0.95, max_tokens=768):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 77 |
return out["choices"][0]["message"]["content"].strip()
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
messages = [
|
| 82 |
-
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 83 |
-
{"role": "user", "content": prompt},
|
| 84 |
-
]
|
| 85 |
-
return run_llm(messages, max_tokens=512)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
web_ctx = fetch_url_text(url) if url else ""
|
| 89 |
-
user_msg = prompt if not web_ctx else f"{prompt}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
| 90 |
-
messages = [
|
| 91 |
-
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 92 |
-
{"role": "user", "content": user_msg},
|
| 93 |
-
]
|
| 94 |
-
return run_llm(messages, max_tokens=700)
|
| 95 |
-
|
| 96 |
-
# ====== UI de chat (Gradio) ======
|
| 97 |
-
with gr.Blocks(title="Astrohunters LLM (Qwen2.5 7B)") as chat_ui:
|
| 98 |
-
gr.Markdown("## 🛰️ Astrohunters LLM (Qwen2.5 7B Instruct, GGUF — CPU Basic)")
|
| 99 |
-
with gr.Row():
|
| 100 |
-
with gr.Column(scale=3):
|
| 101 |
-
chat = gr.Chatbot(height=420, type="tuples")
|
| 102 |
-
with gr.Row():
|
| 103 |
-
txt = gr.Textbox(placeholder="Escribe tu pregunta...", scale=4)
|
| 104 |
-
btn = gr.Button("Enviar", scale=1, variant="primary")
|
| 105 |
-
with gr.Column(scale=2):
|
| 106 |
-
system_tb = gr.Textbox(label="System prompt", value=SYSTEM_DEFAULT, lines=10)
|
| 107 |
-
url_tb = gr.Textbox(label="URL (opcional): Cargar contenido web", placeholder="https://...")
|
| 108 |
-
|
| 109 |
-
def chat_infer(history, system_prompt, user, url_to_load):
|
| 110 |
-
web_ctx = fetch_url_text(url_to_load.strip()) if url_to_load and url_to_load.strip() else ""
|
| 111 |
-
messages = [{"role": "system", "content": system_prompt or SYSTEM_DEFAULT}]
|
| 112 |
-
for u, a in history:
|
| 113 |
-
if u: messages.append({"role": "user", "content": u})
|
| 114 |
-
if a: messages.append({"role": "assistant", "content": a})
|
| 115 |
-
user_msg = user or ""
|
| 116 |
-
if web_ctx:
|
| 117 |
-
user_msg = f"{user_msg}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
| 118 |
-
messages.append({"role": "user", "content": user_msg})
|
| 119 |
-
reply = run_llm(messages, max_tokens=700)
|
| 120 |
-
history.append((user, reply))
|
| 121 |
-
return history, ""
|
| 122 |
-
|
| 123 |
-
btn.click(chat_infer, inputs=[chat, system_tb, txt, url_tb], outputs=[chat, txt])
|
| 124 |
-
txt.submit(chat_infer, inputs=[chat, system_tb, txt, url_tb], outputs=[chat, txt])
|
| 125 |
-
|
| 126 |
-
# ====== FastAPI + CORS + endpoints REST ======
|
| 127 |
-
api = FastAPI()
|
| 128 |
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "*").split(",")
|
| 129 |
-
|
| 130 |
CORSMiddleware,
|
| 131 |
allow_origins=ALLOWED_ORIGINS,
|
| 132 |
allow_credentials=True,
|
|
@@ -134,25 +90,57 @@ api.add_middleware(
|
|
| 134 |
allow_headers=["*"],
|
| 135 |
)
|
| 136 |
|
| 137 |
-
@
|
| 138 |
def healthz():
|
| 139 |
return {"ok": True}
|
| 140 |
|
| 141 |
-
@
|
| 142 |
def run_predict(body: dict = Body(...)):
|
| 143 |
prompt = body.get("prompt", "")
|
| 144 |
system = body.get("system", "")
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
@
|
| 148 |
def run_predict_with_url(body: dict = Body(...)):
|
| 149 |
prompt = body.get("prompt", "")
|
| 150 |
url = body.get("url", "")
|
| 151 |
system = body.get("system", "")
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import os, glob, textwrap
|
| 5 |
from pathlib import Path
|
| 6 |
+
from threading import Lock
|
| 7 |
+
|
| 8 |
+
from fastapi import FastAPI, Body
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
| 11 |
|
|
|
|
| 12 |
from huggingface_hub import snapshot_download
|
| 13 |
from llama_cpp import Llama
|
| 14 |
import requests
|
| 15 |
from bs4 import BeautifulSoup
|
| 16 |
|
| 17 |
+
# ===== Carpeta para el modelo (NO usar /app) =====
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
MODELS_DIR = Path(os.getenv("MODELS_DIR", "/tmp/models"))
|
| 19 |
MODELS_DIR.mkdir(parents=True, exist_ok=True)
|
| 20 |
|
| 21 |
# ===== Modelo (GGUF) =====
|
| 22 |
MODEL_REPO = os.getenv("MODEL_REPO", "Qwen/Qwen2.5-7B-Instruct-GGUF")
|
| 23 |
+
# Para CPU basic puedes poner en Variables: MODEL_PATTERN=qwen2.5-7b-instruct-q3_k_m-*.gguf
|
| 24 |
MODEL_PATTERN = os.getenv("MODEL_PATTERN", "qwen2.5-7b-instruct-q4_k_m-*.gguf")
|
| 25 |
|
| 26 |
print(f"[Boot] Descargando {MODEL_REPO} patrón {MODEL_PATTERN} en {MODELS_DIR} ...")
|
|
|
|
| 46 |
n_gpu_layers=0,
|
| 47 |
verbose=False,
|
| 48 |
)
|
| 49 |
+
_llm_lock = Lock()
|
| 50 |
|
| 51 |
SYSTEM_DEFAULT = textwrap.dedent("""\
|
| 52 |
Eres Astrohunters-Guide, un asistente en español.
|
|
|
|
| 60 |
r = requests.get(url, timeout=15)
|
| 61 |
r.raise_for_status()
|
| 62 |
soup = BeautifulSoup(r.text, "html.parser")
|
| 63 |
+
for t in soup(["script", "style", "noscript"]): t.remove()
|
| 64 |
txt = " ".join(soup.get_text(separator=" ").split())
|
| 65 |
return txt[:max_chars]
|
| 66 |
except Exception as e:
|
| 67 |
return f"[No se pudo cargar {url}: {e}]"
|
| 68 |
|
| 69 |
+
def run_llm(messages, temperature=0.6, top_p=0.95, max_tokens=768) -> str:
|
| 70 |
+
with _llm_lock:
|
| 71 |
+
out = llm.create_chat_completion(
|
| 72 |
+
messages=messages,
|
| 73 |
+
temperature=temperature,
|
| 74 |
+
top_p=top_p,
|
| 75 |
+
max_tokens=max_tokens,
|
| 76 |
+
stream=False,
|
| 77 |
+
)
|
| 78 |
return out["choices"][0]["message"]["content"].strip()
|
| 79 |
|
| 80 |
+
# ===== FastAPI =====
|
| 81 |
+
app = FastAPI(title="Astrohunters LLM API", version="1.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# CORS (ajusta ALLOWED_ORIGINS en Settings → Variables si quieres limitar a tu dominio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "*").split(",")
|
| 85 |
+
app.add_middleware(
|
| 86 |
CORSMiddleware,
|
| 87 |
allow_origins=ALLOWED_ORIGINS,
|
| 88 |
allow_credentials=True,
|
|
|
|
| 90 |
allow_headers=["*"],
|
| 91 |
)
|
| 92 |
|
| 93 |
+
@app.get("/healthz")
|
| 94 |
def healthz():
|
| 95 |
return {"ok": True}
|
| 96 |
|
| 97 |
+
@app.post("/run_predict")
|
| 98 |
def run_predict(body: dict = Body(...)):
|
| 99 |
prompt = body.get("prompt", "")
|
| 100 |
system = body.get("system", "")
|
| 101 |
+
messages = [
|
| 102 |
+
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 103 |
+
{"role": "user", "content": prompt},
|
| 104 |
+
]
|
| 105 |
+
reply = run_llm(messages, max_tokens=512)
|
| 106 |
+
return {"reply": reply}
|
| 107 |
|
| 108 |
+
@app.post("/run_predict_with_url")
|
| 109 |
def run_predict_with_url(body: dict = Body(...)):
|
| 110 |
prompt = body.get("prompt", "")
|
| 111 |
url = body.get("url", "")
|
| 112 |
system = body.get("system", "")
|
| 113 |
+
web_ctx = fetch_url_text(url) if url else ""
|
| 114 |
+
user_msg = prompt if not web_ctx else f"{prompt}\n\n[CONTEXTO_WEB]\n{web_ctx}"
|
| 115 |
+
messages = [
|
| 116 |
+
{"role": "system", "content": system or SYSTEM_DEFAULT},
|
| 117 |
+
{"role": "user", "content": user_msg},
|
| 118 |
+
]
|
| 119 |
+
reply = run_llm(messages, max_tokens=700)
|
| 120 |
+
return {"reply": reply}
|
| 121 |
+
|
| 122 |
+
# Página mínima de prueba
|
| 123 |
+
@app.get("/", response_class=HTMLResponse)
|
| 124 |
+
def home():
|
| 125 |
+
return """
|
| 126 |
+
<!doctype html>
|
| 127 |
+
<html>
|
| 128 |
+
<head><meta charset="utf-8"><title>Astrohunters LLM API</title></head>
|
| 129 |
+
<body style="font-family:system-ui;max-width:800px;margin:40px auto">
|
| 130 |
+
<h2>🛰️ Astrohunters LLM API</h2>
|
| 131 |
+
<p>Endpoints: <code>/healthz</code>, <code>/run_predict</code>, <code>/run_predict_with_url</code>, y <a href="/docs">/docs</a> (Swagger).</p>
|
| 132 |
+
<textarea id="q" rows="4" style="width:100%" placeholder="Escribe tu pregunta..."></textarea>
|
| 133 |
+
<button id="btn">Preguntar</button>
|
| 134 |
+
<pre id="out"></pre>
|
| 135 |
+
<script>
|
| 136 |
+
document.getElementById('btn').onclick = async () => {
|
| 137 |
+
const r = await fetch('/run_predict', {
|
| 138 |
+
method:'POST', headers:{'Content-Type':'application/json'},
|
| 139 |
+
body: JSON.stringify({prompt: document.getElementById('q').value})
|
| 140 |
+
});
|
| 141 |
+
const j = await r.json();
|
| 142 |
+
document.getElementById('out').textContent = j.reply || JSON.stringify(j,null,2);
|
| 143 |
+
};
|
| 144 |
+
</script>
|
| 145 |
+
</body></html>
|
| 146 |
+
"""
|