Spaces:
Build error
Build error
| # -------------------------------------------------------- | |
| # X-Decoder -- Generalized Decoding for Pixel, Image, and Language | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Modified by Xueyan Zou (xueyan@cs.wisc.edu) | |
| # -------------------------------------------------------- | |
| import os | |
| import sys | |
| import torch | |
| import logging | |
| #import wandb | |
| import random | |
| import numpy as np | |
| from utilities.arguments import load_opt_command | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # def init_wandb(args, job_dir, entity='YOUR_USER_NAME', project='YOUR_PROJECT_NAME', job_name='tmp'): | |
| # wandb_dir = os.path.join(job_dir, 'wandb') | |
| # os.makedirs(wandb_dir, exist_ok=True) | |
| # runid = None | |
| # if os.path.exists(f"{wandb_dir}/runid.txt"): | |
| # runid = open(f"{wandb_dir}/runid.txt").read() | |
| # wandb.init(project=project, | |
| # name=job_name, | |
| # dir=wandb_dir, | |
| # entity=entity, | |
| # resume="allow", | |
| # id=runid, | |
| # config={"hierarchical": True},) | |
| # open(f"{wandb_dir}/runid.txt", 'w').write(wandb.run.id) | |
| # wandb.config.update({k: args[k] for k in args if k not in wandb.config}) | |
| def set_seed(seed: int = 42) -> None: | |
| np.random.seed(seed) | |
| random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| # When running on the CuDNN backend, two further options must be set | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| # Set a fixed value for the hash seed | |
| os.environ["PYTHONHASHSEED"] = str(seed) | |
| print(f"Random seed set as {seed}") | |
| def main(args=None): | |
| ''' | |
| [Main function for the entry point] | |
| 1. Set environment variables for distributed training. | |
| 2. Load the config file and set up the trainer. | |
| ''' | |
| opt, cmdline_args = load_opt_command(args) | |
| command = cmdline_args.command | |
| if cmdline_args.user_dir: | |
| absolute_user_dir = os.path.abspath(cmdline_args.user_dir) | |
| opt['base_path'] = absolute_user_dir | |
| # update_opt(opt, command) | |
| world_size = 1 | |
| if 'OMPI_COMM_WORLD_SIZE' in os.environ: | |
| world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| if opt['TRAINER'] == 'xdecoder': | |
| from trainer import XDecoder_Trainer as Trainer | |
| else: | |
| assert False, "The trainer type: {} is not defined!".format(opt['TRAINER']) | |
| set_seed(opt['RANDOM_SEED']) | |
| trainer = Trainer(opt) | |
| os.environ['TORCH_DISTRIBUTED_DEBUG']='DETAIL' | |
| if command == "train": | |
| # if opt['rank'] == 0 and opt['WANDB']: | |
| # wandb.login(key=os.environ['WANDB_KEY']) | |
| # init_wandb(opt, trainer.save_folder, job_name=trainer.save_folder) | |
| trainer.train() | |
| elif command == "evaluate": | |
| trainer.eval() | |
| else: | |
| raise ValueError(f"Unknown command: {command}") | |
| if __name__ == "__main__": | |
| main() | |
| sys.exit(0) | |