Spaces:
Paused
Paused
Rename App3.py to app.py
Browse files- App3.py → app.py +60 -61
App3.py → app.py
RENAMED
|
@@ -1,61 +1,60 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
best_answer
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
st.
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import faiss
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import pickle
|
| 5 |
+
import re
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
st.title("Vietnamese Legal Question Answering System")
|
| 12 |
+
|
| 13 |
+
with open('articles.pkl', 'rb') as file:
|
| 14 |
+
articles = pickle.load(file)
|
| 15 |
+
|
| 16 |
+
index_loaded = faiss.read_index("sentence_embeddings_index_no_citation.faiss")
|
| 17 |
+
|
| 18 |
+
if 'model_embedding' not in st.session_state:
|
| 19 |
+
print("ERROR")
|
| 20 |
+
st.session_state.model_embedding = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Replace this with your own checkpoint
|
| 25 |
+
model_checkpoint = "model"
|
| 26 |
+
question_answerer = pipeline("question-answering", model=model_checkpoint)
|
| 27 |
+
def question_answering(question):
|
| 28 |
+
print(question)
|
| 29 |
+
query_sentence = [question]
|
| 30 |
+
query_embedding = st.session_state.model_embedding.encode(query_sentence)
|
| 31 |
+
k = 5
|
| 32 |
+
D, I = index_loaded.search(query_embedding.astype('float32'), k) # D is distances, I is indices
|
| 33 |
+
answer = [question_answerer(question=query_sentence[0], context=articles[I[0][i]], max_answer_len = 512) for i in range(k)]
|
| 34 |
+
best_answer = max(answer, key=lambda x: x['score'])
|
| 35 |
+
print(best_answer['answer'])
|
| 36 |
+
if best_answer['score'] > 0.5:
|
| 37 |
+
return best_answer['answer']
|
| 38 |
+
return f"Tôi không chắc lắm nhưng có lẽ câu trả lời là: {best_answer['answer']}"
|
| 39 |
+
|
| 40 |
+
if "messages" not in st.session_state:
|
| 41 |
+
st.session_state.messages = []
|
| 42 |
+
|
| 43 |
+
for message in st.session_state.messages:
|
| 44 |
+
with st.chat_message(message["role"]):
|
| 45 |
+
st.markdown(message["content"])
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def clean_answer(s):
|
| 49 |
+
# Sử dụng regex để loại bỏ tất cả các ký tự đặc biệt ở cuối chuỗi
|
| 50 |
+
return re.sub(r'[^a-zA-Z0-9]+$', '', s)
|
| 51 |
+
|
| 52 |
+
if prompt := st.chat_input("What is up?"):
|
| 53 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 54 |
+
with st.chat_message("user"):
|
| 55 |
+
st.markdown(prompt)
|
| 56 |
+
response = clean_answer(question_answering(prompt))
|
| 57 |
+
with st.chat_message("assistant"):
|
| 58 |
+
st.markdown(response)
|
| 59 |
+
|
| 60 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|