File size: 41,675 Bytes
f47aa49
 
 
 
 
 
5048db9
f47aa49
 
5048db9
 
 
 
f47aa49
 
 
 
 
 
 
 
 
5048db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aa49
 
5048db9
 
f47aa49
5048db9
f47aa49
 
5048db9
f47aa49
 
5048db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aa49
 
 
 
5048db9
f47aa49
 
 
 
5048db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aa49
 
 
5048db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aa49
5048db9
 
 
 
 
 
 
f47aa49
5048db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47aa49
 
 
5048db9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
import os
import io
import gc
import math
import time
import uuid
import json
import spaces
import random
from abc import ABC, abstractmethod
from dataclasses import dataclass, field, asdict
from typing import Dict, List, Tuple, Optional, Any, Union
from enum import Enum

import gradio as gr
import numpy as np
import torch
from transformers import AutoModel, AutoTokenizer

import mido
from mido import Message, MidiFile, MidiTrack


# Configuration Classes

class ComputeMode(Enum):
    """Enum for computation modes."""
    FULL_MODEL = "Full model"
    MOCK_LATENTS = "Mock latents"


class MusicRole(Enum):
    """Enum for musical roles/layers."""
    MELODY = "melody"
    BASS = "bass"
    HARMONY = "harmony"
    PAD = "pad"
    ACCENT = "accent"
    ATMOSPHERE = "atmosphere"


@dataclass
class ScaleDefinition:
    """Represents a musical scale."""
    name: str
    notes: List[int]
    description: str = ""
    
    def __post_init__(self):
        """Validate scale notes are within MIDI range."""
        for note in self.notes:
            if not 0 <= note <= 127:
                raise ValueError(f"MIDI note {note} out of range (0-127)")


@dataclass
class InstrumentMapping:
    """Maps a layer to an instrument and musical role."""
    program: int  # MIDI program number
    role: MusicRole
    channel: int
    name: str = ""
    
    def __post_init__(self):
        """Validate MIDI program and channel."""
        if not 0 <= self.program <= 127:
            raise ValueError(f"MIDI program {self.program} out of range")
        if not 0 <= self.channel <= 15:
            raise ValueError(f"MIDI channel {self.channel} out of range")


@dataclass
class GenerationConfig:
    """Complete configuration for music generation."""
    model_name: str
    compute_mode: ComputeMode
    base_tempo: int
    velocity_range: Tuple[int, int]
    scale: ScaleDefinition
    num_layers_limit: int
    seed: int
    instrument_preset: str
    
    # Additional configuration options
    quantization_grid: int = 120
    octave_range: int = 2
    dynamics_curve: str = "linear"  # linear, exponential, logarithmic
    
    def validate(self):
        """Validate configuration parameters."""
        if not 1 <= self.base_tempo <= 2000:
            raise ValueError("Tempo must be between 1 and 2000")
        if not 1 <= self.velocity_range[0] < self.velocity_range[1] <= 127:
            raise ValueError("Invalid velocity range")
        if not 1 <= self.num_layers_limit <= 32:
            raise ValueError("Number of layers must be between 1 and 32")
    
    def to_dict(self) -> Dict:
        """Convert config to dictionary for serialization."""
        return {
            "model_name": self.model_name,
            "compute_mode": self.compute_mode.value,
            "base_tempo": self.base_tempo,
            "velocity_range": self.velocity_range,
            "scale_name": self.scale.name,
            "scale_notes": self.scale.notes,
            "num_layers_limit": self.num_layers_limit,
            "seed": self.seed,
            "instrument_preset": self.instrument_preset,
            "quantization_grid": self.quantization_grid,
            "octave_range": self.octave_range,
            "dynamics_curve": self.dynamics_curve
        }
    
    @classmethod
    def from_dict(cls, data: Dict, scale_manager: "ScaleManager") -> "GenerationConfig":
        """Create config from dictionary."""
        scale = scale_manager.get_scale(data["scale_name"])
        if scale is None:
            scale = ScaleDefinition(name="Custom", notes=data["scale_notes"])
        
        return cls(
            model_name=data["model_name"],
            compute_mode=ComputeMode(data["compute_mode"]),
            base_tempo=data["base_tempo"],
            velocity_range=tuple(data["velocity_range"]),
            scale=scale,
            num_layers_limit=data["num_layers_limit"],
            seed=data["seed"],
            instrument_preset=data["instrument_preset"],
            quantization_grid=data.get("quantization_grid", 120),
            octave_range=data.get("octave_range", 2),
            dynamics_curve=data.get("dynamics_curve", "linear")
        )


@dataclass
class Latents:
    """Container for model latents."""
    hidden_states: List[torch.Tensor]
    attentions: List[torch.Tensor]
    num_layers: int
    num_tokens: int
    metadata: Dict[str, Any] = field(default_factory=dict)


# Music Components

class ScaleManager:
    """Manages musical scales and modes."""
    
    def __init__(self):
        """Initialize with default scales."""
        self.scales = {
            "C pentatonic": ScaleDefinition(
                "C pentatonic", 
                [60, 62, 65, 67, 70, 72, 74, 77],
                "Major pentatonic scale"
            ),
            "C major": ScaleDefinition(
                "C major",
                [60, 62, 64, 65, 67, 69, 71, 72],
                "Major scale (Ionian mode)"
            ),
            "A minor": ScaleDefinition(
                "A minor",
                [57, 59, 60, 62, 64, 65, 67, 69],
                "Natural minor scale (Aeolian mode)"
            ),
            "D dorian": ScaleDefinition(
                "D dorian",
                [62, 64, 65, 67, 69, 71, 72, 74],
                "Dorian mode - minor with raised 6th"
            ),
            "E phrygian": ScaleDefinition(
                "E phrygian",
                [64, 65, 67, 69, 71, 72, 74, 76],
                "Phrygian mode - minor with lowered 2nd"
            ),
            "G mixolydian": ScaleDefinition(
                "G mixolydian",
                [67, 69, 71, 72, 74, 76, 77, 79],
                "Mixolydian mode - major with lowered 7th"
            ),
            "Blues scale": ScaleDefinition(
                "Blues scale",
                [60, 63, 65, 66, 67, 70, 72, 75],
                "Blues scale with blue notes"
            ),
            "Chromatic": ScaleDefinition(
                "Chromatic",
                list(range(60, 72)),
                "All 12 semitones"
            )
        }
    
    def get_scale(self, name: str) -> Optional[ScaleDefinition]:
        """Get scale by name."""
        return self.scales.get(name)
    
    def add_custom_scale(self, name: str, notes: List[int], description: str = "") -> ScaleDefinition:
        """Add a custom scale."""
        scale = ScaleDefinition(name, notes, description)
        self.scales[name] = scale
        return scale
    
    def list_scales(self) -> List[str]:
        """Get list of available scale names."""
        return list(self.scales.keys())


class InstrumentPresetManager:
    """Manages instrument presets for different musical styles."""
    
    def __init__(self):
        """Initialize with default presets."""
        self.presets = {
            "Ensemble (melody+bass+pad etc.)": [
                InstrumentMapping(0, MusicRole.MELODY, 0, "Piano"),
                InstrumentMapping(33, MusicRole.BASS, 1, "Electric Bass"),
                InstrumentMapping(46, MusicRole.HARMONY, 2, "Harp"),
                InstrumentMapping(48, MusicRole.PAD, 3, "String Ensemble"),
                InstrumentMapping(11, MusicRole.ACCENT, 4, "Vibraphone"),
                InstrumentMapping(89, MusicRole.ATMOSPHERE, 5, "Pad Warm")
            ],
            "Piano Trio (melody+bass+harmony)": [
                InstrumentMapping(0, MusicRole.MELODY, 0, "Piano"),
                InstrumentMapping(33, MusicRole.BASS, 1, "Electric Bass"),
                InstrumentMapping(0, MusicRole.HARMONY, 2, "Piano"),
                InstrumentMapping(48, MusicRole.PAD, 3, "String Ensemble"),
                InstrumentMapping(0, MusicRole.ACCENT, 4, "Piano"),
                InstrumentMapping(0, MusicRole.ATMOSPHERE, 5, "Piano")
            ],
            "Pads & Atmosphere": [
                InstrumentMapping(48, MusicRole.PAD, 0, "String Ensemble"),
                InstrumentMapping(48, MusicRole.PAD, 1, "String Ensemble"),
                InstrumentMapping(89, MusicRole.ATMOSPHERE, 2, "Pad Warm"),
                InstrumentMapping(89, MusicRole.ATMOSPHERE, 3, "Pad Warm"),
                InstrumentMapping(46, MusicRole.HARMONY, 4, "Harp"),
                InstrumentMapping(11, MusicRole.ACCENT, 5, "Vibraphone")
            ],
            "Orchestral": [
                InstrumentMapping(40, MusicRole.MELODY, 0, "Violin"),
                InstrumentMapping(42, MusicRole.BASS, 1, "Cello"),
                InstrumentMapping(46, MusicRole.HARMONY, 2, "Harp"),
                InstrumentMapping(48, MusicRole.PAD, 3, "String Ensemble"),
                InstrumentMapping(73, MusicRole.ACCENT, 4, "Flute"),
                InstrumentMapping(49, MusicRole.ATMOSPHERE, 5, "Slow Strings")
            ],
            "Electronic": [
                InstrumentMapping(80, MusicRole.MELODY, 0, "Lead Square"),
                InstrumentMapping(38, MusicRole.BASS, 1, "Synth Bass"),
                InstrumentMapping(81, MusicRole.HARMONY, 2, "Lead Sawtooth"),
                InstrumentMapping(90, MusicRole.PAD, 3, "Pad Polysynth"),
                InstrumentMapping(82, MusicRole.ACCENT, 4, "Lead Calliope"),
                InstrumentMapping(91, MusicRole.ATMOSPHERE, 5, "Pad Bowed")
            ]
        }
    
    def get_preset(self, name: str) -> List[InstrumentMapping]:
        """Get instrument preset by name."""
        return self.presets.get(name, self.presets["Ensemble (melody+bass+pad etc.)"])
    
    def list_presets(self) -> List[str]:
        """Get list of available preset names."""
        return list(self.presets.keys())


# Music Generation Components

class MusicMathUtils:
    """Utility class for music-related mathematical operations."""
    
    @staticmethod
    def entropy(p: np.ndarray) -> float:
        """Calculate Shannon entropy of a probability distribution."""
        p = p / (p.sum() + 1e-9)
        return float(-np.sum(p * np.log2(p + 1e-9)))
    
    @staticmethod
    def quantize_time(time_val: int, grid: int = 120) -> int:
        """Quantize time value to grid."""
        return int(round(time_val / grid) * grid)
    
    @staticmethod
    def norm_to_scale(val: float, scale: np.ndarray, octave_range: int = 2) -> int:
        """Map normalized value to scale note with octave range."""
        octave = int(abs(val) * octave_range) * 12
        note_idx = int(abs(val * 100) % len(scale))
        return int(scale[note_idx] + octave)
    
    @staticmethod
    def apply_dynamics_curve(value: float, curve_type: str = "linear") -> float:
        """Apply dynamics curve to a value."""
        value = np.clip(value, 0, 1)
        if curve_type == "exponential":
            return value ** 2
        elif curve_type == "logarithmic":
            return np.log1p(value * np.e) / np.log1p(np.e)
        else:  # linear
            return value


class NoteGenerator:
    """Generates notes based on neural network latents."""
    
    # Role-specific frequency multipliers
    ROLE_FREQUENCIES = {
        MusicRole.MELODY: 2.0,
        MusicRole.BASS: 0.5,
        MusicRole.HARMONY: 1.5,
        MusicRole.PAD: 0.25,
        MusicRole.ACCENT: 3.0,
        MusicRole.ATMOSPHERE: 0.33
    }
    
    # Role-specific weight distributions
    ROLE_WEIGHTS = {
        MusicRole.MELODY: np.array([0.4, 0.2, 0.2, 0.1, 0.1]),
        MusicRole.BASS: np.array([0.1, 0.4, 0.1, 0.3, 0.1]),
        MusicRole.HARMONY: np.array([0.2, 0.2, 0.3, 0.2, 0.1]),
        MusicRole.PAD: np.array([0.1, 0.3, 0.1, 0.1, 0.4]),
        MusicRole.ACCENT: np.array([0.5, 0.1, 0.2, 0.1, 0.1]),
        MusicRole.ATMOSPHERE: np.array([0.1, 0.2, 0.1, 0.2, 0.4])
    }
    
    def __init__(self, config: GenerationConfig):
        """Initialize with generation configuration."""
        self.config = config
        self.math_utils = MusicMathUtils()
        self.history: Dict[int, int] = {}
    
    def create_note_probability(
        self, 
        layer_idx: int, 
        token_idx: int, 
        attention_val: float, 
        hidden_state: np.ndarray, 
        num_tokens: int, 
        role: MusicRole
    ) -> float:
        """Calculate probability of playing a note based on multiple factors."""
        # Base probability from attention
        base_prob = 1 / (1 + np.exp(-10 * (attention_val - 0.5)))
        
        # Temporal factor based on role frequency
        temporal_factor = 0.5 + 0.5 * np.sin(
            2 * np.pi * self.ROLE_FREQUENCIES[role] * token_idx / max(1, num_tokens)
        )
        
        # Energy factor from hidden state norm
        energy = np.linalg.norm(hidden_state)
        energy_factor = np.tanh(energy / 10)
        
        # Variance factor
        local_variance = np.var(hidden_state)
        variance_factor = 1 - np.exp(-local_variance)
        
        # Entropy factor
        state_entropy = self.math_utils.entropy(np.abs(hidden_state))
        max_entropy = np.log2(max(2, hidden_state.shape[0]))
        entropy_factor = state_entropy / max_entropy
        
        # Combine factors with role-specific weights
        factors = np.array([base_prob, temporal_factor, energy_factor, variance_factor, entropy_factor])
        weights = self.ROLE_WEIGHTS[role]
        combined_prob = float(np.dot(weights, factors))
        
        # Add deterministic noise for variation
        noise_seed = layer_idx * 1000 + token_idx
        noise = 0.1 * (np.sin(noise_seed * 0.1) + np.cos(noise_seed * 0.23)) / 2
        
        # Apply dynamics curve
        final_prob = (combined_prob + noise) ** 1.5
        final_prob = self.math_utils.apply_dynamics_curve(final_prob, self.config.dynamics_curve)
        
        return float(np.clip(final_prob, 0, 1))
    
    def should_play_note(
        self, 
        layer_idx: int, 
        token_idx: int, 
        attention_val: float, 
        hidden_state: np.ndarray, 
        num_tokens: int, 
        role: MusicRole
    ) -> bool:
        """Determine if a note should be played."""
        prob = self.create_note_probability(
            layer_idx, token_idx, attention_val, hidden_state, num_tokens, role
        )
        
        # Adjust probability based on silence duration
        if layer_idx in self.history:
            last_played = self.history[layer_idx]
            silence_duration = token_idx - last_played
            prob *= (1 + np.tanh(silence_duration / 5) * 0.5)
        
        # Stochastic decision
        play_note = np.random.random() < prob
        
        if play_note:
            self.history[layer_idx] = token_idx
        
        return play_note
    
    def generate_notes_for_role(
        self, 
        role: MusicRole, 
        hidden_state: np.ndarray, 
        scale: np.ndarray
    ) -> List[int]:
        """Generate notes based on role and hidden state."""
        if role == MusicRole.MELODY:
            note = self.math_utils.norm_to_scale(
                hidden_state[0], scale, octave_range=1
            )
            return [note]
        
        elif role == MusicRole.BASS:
            note = self.math_utils.norm_to_scale(
                hidden_state[0], scale, octave_range=0
            ) - 12
            return [note]
        
        elif role == MusicRole.HARMONY:
            return [
                self.math_utils.norm_to_scale(hidden_state[i], scale, octave_range=1)
                for i in range(0, min(2, len(hidden_state)), 1)
            ]
        
        elif role == MusicRole.PAD:
            return [
                self.math_utils.norm_to_scale(hidden_state[i], scale, octave_range=1)
                for i in range(0, min(3, len(hidden_state)), 2)
            ]
        
        elif role == MusicRole.ACCENT:
            note = self.math_utils.norm_to_scale(
                hidden_state[0], scale, octave_range=2
            ) + 12
            return [note]
        
        else:  # ATMOSPHERE
            return [
                self.math_utils.norm_to_scale(hidden_state[i], scale, octave_range=1)
                for i in range(0, min(2, len(hidden_state)), 3)
            ]
    
    def calculate_velocity(
        self, 
        role: MusicRole, 
        attention_strength: float
    ) -> int:
        """Calculate note velocity based on role and attention."""
        base_velocity = int(
            attention_strength * (self.config.velocity_range[1] - self.config.velocity_range[0]) 
            + self.config.velocity_range[0]
        )
        
        # Role-specific adjustments
        if role == MusicRole.MELODY:
            velocity = min(base_velocity + 10, 127)
        elif role == MusicRole.ACCENT:
            velocity = min(base_velocity + 20, 127)
        elif role in [MusicRole.PAD, MusicRole.ATMOSPHERE]:
            velocity = max(base_velocity - 10, 20)
        else:
            velocity = base_velocity
        
        return velocity
    
    def calculate_duration(
        self, 
        role: MusicRole, 
        attention_matrix: np.ndarray
    ) -> int:
        """Calculate note duration based on role and attention."""
        if role in [MusicRole.PAD, MusicRole.ATMOSPHERE]:
            duration = self.config.base_tempo * 4
        elif role == MusicRole.BASS:
            duration = self.config.base_tempo
        else:
            try:
                dur_factor = self.math_utils.entropy(attention_matrix.mean(axis=0)) / (
                    np.log2(attention_matrix.shape[-1]) + 1e-9
                )
            except Exception:
                dur_factor = 0.5
            duration = self.math_utils.quantize_time(
                int(self.config.base_tempo * (0.5 + dur_factor * 1.5)),
                self.config.quantization_grid
            )
        
        return duration


# Model Interaction

class LatentExtractor(ABC):
    """Abstract base class for latent extraction strategies."""
    
    @abstractmethod
    def extract(self, text: str, config: GenerationConfig, progress=None) -> Latents:
        """Extract latents from text."""
        pass


class MockLatentExtractor(LatentExtractor):
    """Generate mock latents for testing without loading models."""
    
    def extract(self, text: str, config: GenerationConfig, progress=None) -> Latents:
        """Generate synthetic latents based on text."""
        # Simulate token count based on text length
        tokens = max(16, min(128, len(text.split()) * 4))
        layers = min(config.num_layers_limit, 6)
        
        # Generate deterministic but varied latents based on text
        np.random.seed(hash(text) % 2**32)
        
        hidden_states = [
            torch.randn(1, tokens, 128) for _ in range(layers)
        ]
        attentions = [
            torch.rand(1, 8, tokens, tokens) for _ in range(layers)
        ]
        
        metadata = {
            "mode": "mock",
            "text_length": len(text),
            "generated_tokens": tokens,
            "generated_layers": layers
        }
        
        return Latents(
            hidden_states=hidden_states,
            attentions=attentions,
            num_layers=layers,
            num_tokens=tokens,
            metadata=metadata
        )


class ModelLatentExtractor(LatentExtractor):
    """Extract real latents from transformer models."""
    
    @spaces.GPU(duration=45)
    def extract(self, text: str, config: GenerationConfig, progress=None) -> Latents:
        """Extract latents from a real transformer model."""
        model_name = config.model_name
        
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        if tokenizer.pad_token is None and tokenizer.eos_token is not None:
            tokenizer.pad_token = tokenizer.eos_token
        
        # Configure model loading
        load_kwargs = {
            "output_hidden_states": True,
            "output_attentions": True,
            "device_map": "cuda" if torch.cuda.is_available() else "cpu",
        }
        
        # Set appropriate dtype
        try:
            load_kwargs["torch_dtype"] = (
                torch.bfloat16 if torch.cuda.is_available() else torch.float32
            )
        except Exception:
            pass
        
        # Load model
        model = AutoModel.from_pretrained(model_name, **load_kwargs)
        
        # Tokenize input
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
        device = next(model.parameters()).device
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        # Get model outputs
        with torch.no_grad():
            outputs = model(**inputs)
            hidden_states = list(outputs.hidden_states)
            attentions = list(outputs.attentions)
        
        # Move to CPU to free VRAM
        hidden_states = [hs.to("cpu") for hs in hidden_states]
        attentions = [att.to("cpu") for att in attentions]
        
        # Limit layers
        layers = min(config.num_layers_limit, len(hidden_states))
        tokens = hidden_states[0].shape[1]
        
        # Clean up
        try:
            del model
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            gc.collect()
        except Exception:
            pass
        
        metadata = {
            "mode": "full_model",
            "model_name": model_name,
            "actual_layers": len(hidden_states),
            "used_layers": layers,
            "tokens": tokens
        }
        
        return Latents(
            hidden_states=hidden_states[:layers],
            attentions=attentions[:layers],
            num_layers=layers,
            num_tokens=tokens,
            metadata=metadata
        )


class LatentExtractorFactory:
    """Factory for creating appropriate latent extractors."""
    
    @staticmethod
    def create(compute_mode: ComputeMode) -> LatentExtractor:
        """Create a latent extractor based on compute mode."""
        if compute_mode == ComputeMode.MOCK_LATENTS:
            return MockLatentExtractor()
        else:
            return ModelLatentExtractor()


# MIDI Generation

class MIDIRenderer:
    """Renders MIDI files from latents."""
    
    def __init__(self, config: GenerationConfig, instrument_manager: InstrumentPresetManager):
        """Initialize MIDI renderer."""
        self.config = config
        self.instrument_manager = instrument_manager
        self.note_generator = NoteGenerator(config)
        self.math_utils = MusicMathUtils()
    
    def render(self, latents: Latents) -> Tuple[bytes, Dict[str, Any]]:
        """Render MIDI from latents."""
        # Set random seeds for reproducibility
        np.random.seed(self.config.seed)
        random.seed(self.config.seed)
        torch.manual_seed(self.config.seed)
        
        # Prepare data
        scale = np.array(self.config.scale.notes, dtype=int)
        num_layers = latents.num_layers
        num_tokens = latents.num_tokens
        
        # Convert tensors to numpy
        hidden_states = [
            hs.float().numpy() if isinstance(hs, torch.Tensor) else hs 
            for hs in latents.hidden_states
        ]
        attentions = [
            att.float().numpy() if isinstance(att, torch.Tensor) else att 
            for att in latents.attentions
        ]
        
        # Get instrument mappings
        instrument_mappings = self.instrument_manager.get_preset(self.config.instrument_preset)
        
        # Create MIDI file and tracks
        midi_file = MidiFile()
        tracks = self._create_tracks(midi_file, num_layers, instrument_mappings)
        
        # Generate notes
        stats = self._generate_notes(
            tracks, hidden_states, attentions, 
            scale, num_tokens, instrument_mappings
        )
        
        # Convert to bytes
        bio = io.BytesIO()
        midi_file.save(file=bio)
        bio.seek(0)
        
        # Prepare metadata
        metadata = {
            "config": self.config.to_dict(),
            "latents_info": latents.metadata,
            "stats": stats,
            "timestamp": time.time()
        }
        
        return bio.read(), metadata
    
    def _create_tracks(
        self, 
        midi_file: MidiFile, 
        num_layers: int, 
        instrument_mappings: List[InstrumentMapping]
    ) -> List[MidiTrack]:
        """Create MIDI tracks with instrument assignments."""
        tracks = []
        
        for layer_idx in range(num_layers):
            track = MidiTrack()
            midi_file.tracks.append(track)
            tracks.append(track)
            
            # Get instrument mapping for this layer
            if layer_idx < len(instrument_mappings):
                mapping = instrument_mappings[layer_idx]
            else:
                # Default to piano if not enough mappings
                mapping = InstrumentMapping(0, MusicRole.MELODY, layer_idx % 16)
            
            # Set instrument
            track.append(Message(
                "program_change", 
                program=mapping.program, 
                time=0, 
                channel=mapping.channel
            ))
            
            # Add track name
            if mapping.name:
                track.append(mido.MetaMessage(
                    "track_name", 
                    name=f"{mapping.name} - {mapping.role.value}", 
                    time=0
                ))
        
        return tracks
    
    def _generate_notes(
        self,
        tracks: List[MidiTrack],
        hidden_states: List[np.ndarray],
        attentions: List[np.ndarray],
        scale: np.ndarray,
        num_tokens: int,
        instrument_mappings: List[InstrumentMapping]
    ) -> Dict[str, Any]:
        """Generate notes for all tracks."""
        current_time = [0] * len(tracks)
        notes_count = [0] * len(tracks)
        
        for token_idx in range(num_tokens):
            # Update time periodically
            if token_idx > 0 and token_idx % 4 == 0:
                for layer_idx in range(len(tracks)):
                    current_time[layer_idx] += self.config.base_tempo
            
            # Calculate panning
            pan = 64 + int(32 * np.sin(token_idx * math.pi / max(1, num_tokens)))
            
            # Generate notes for each layer
            for layer_idx in range(len(tracks)):
                if layer_idx >= len(instrument_mappings):
                    continue
                
                mapping = instrument_mappings[layer_idx]
                
                # Get attention and hidden state
                attn_matrix = attentions[min(layer_idx, len(attentions) - 1)][0, :, token_idx, :]
                attention_strength = float(np.mean(attn_matrix))
                layer_vec = hidden_states[layer_idx][0, token_idx]
                
                # Check if note should be played
                if not self.note_generator.should_play_note(
                    layer_idx, token_idx, attention_strength, 
                    layer_vec, num_tokens, mapping.role
                ):
                    continue
                
                # Generate notes
                notes_to_play = self.note_generator.generate_notes_for_role(
                    mapping.role, layer_vec, scale
                )
                
                # Calculate velocity and duration
                velocity = self.note_generator.calculate_velocity(
                    mapping.role, attention_strength
                )
                duration = self.note_generator.calculate_duration(
                    mapping.role, attn_matrix
                )
                
                # Add notes to track
                for note in notes_to_play:
                    note = max(21, min(108, int(note)))  # Clamp to piano range
                    
                    tracks[layer_idx].append(Message(
                        "note_on", 
                        note=note, 
                        velocity=velocity, 
                        time=current_time[layer_idx], 
                        channel=mapping.channel
                    ))
                    
                    tracks[layer_idx].append(Message(
                        "note_off", 
                        note=note, 
                        velocity=0, 
                        time=duration, 
                        channel=mapping.channel
                    ))
                    
                    current_time[layer_idx] = 0
                    notes_count[layer_idx] += 1
                
                # Set panning on first token
                if token_idx == 0:
                    tracks[layer_idx].append(Message(
                        "control_change", 
                        control=10, 
                        value=pan, 
                        time=0, 
                        channel=mapping.channel
                    ))
        
        return {
            "num_layers": len(tracks),
            "num_tokens": num_tokens,
            "notes_per_layer": notes_count,
            "total_notes": int(sum(notes_count)),
            "tempo_ticks_per_beat": int(self.config.base_tempo),
            "scale": list(map(int, scale.tolist())),
        }


# Main Orchestrator

class LLMForestOrchestra:
    """Main orchestrator class that coordinates the entire pipeline."""
    
    DEFAULT_MODEL = "unsloth/Qwen3-14B-Base"
    
    def __init__(self):
        """Initialize the orchestra."""
        self.scale_manager = ScaleManager()
        self.instrument_manager = InstrumentPresetManager()
        self.saved_configs: Dict[str, GenerationConfig] = {}
    
    def generate(
        self,
        text: str,
        model_name: str,
        compute_mode: str,
        base_tempo: int,
        velocity_range: Tuple[int, int],
        scale_name: str,
        custom_scale_notes: Optional[List[int]],
        num_layers: int,
        instrument_preset: str,
        seed: int,
        quantization_grid: int = 120,
        octave_range: int = 2,
        dynamics_curve: str = "linear"
    ) -> Tuple[str, Dict[str, Any]]:
        """Generate MIDI from text input."""
        # Get or create scale
        if scale_name == "Custom":
            if not custom_scale_notes:
                raise ValueError("Custom scale requires note list")
            scale = ScaleDefinition("Custom", custom_scale_notes)
        else:
            scale = self.scale_manager.get_scale(scale_name)
            if scale is None:
                raise ValueError(f"Unknown scale: {scale_name}")
        
        # Create configuration
        config = GenerationConfig(
            model_name=model_name or self.DEFAULT_MODEL,
            compute_mode=ComputeMode(compute_mode),
            base_tempo=base_tempo,
            velocity_range=velocity_range,
            scale=scale,
            num_layers_limit=num_layers,
            seed=seed,
            instrument_preset=instrument_preset,
            quantization_grid=quantization_grid,
            octave_range=octave_range,
            dynamics_curve=dynamics_curve
        )
        
        # Validate configuration
        config.validate()
        
        # Extract latents
        extractor = LatentExtractorFactory.create(config.compute_mode)
        latents = extractor.extract(text, config)
        
        # Render MIDI
        renderer = MIDIRenderer(config, self.instrument_manager)
        midi_bytes, metadata = renderer.render(latents)
        
        # Save MIDI file
        filename = f"llm_forest_orchestra_{uuid.uuid4().hex[:8]}.mid"
        with open(filename, "wb") as f:
            f.write(midi_bytes)
        
        return filename, metadata
    
    def save_config(self, name: str, config: GenerationConfig):
        """Save a configuration for later use."""
        self.saved_configs[name] = config
    
    def load_config(self, name: str) -> Optional[GenerationConfig]:
        """Load a saved configuration."""
        return self.saved_configs.get(name)
    
    def export_config(self, config: GenerationConfig, filepath: str):
        """Export configuration to JSON file."""
        with open(filepath, "w") as f:
            json.dump(config.to_dict(), f, indent=2)
    
    def import_config(self, filepath: str) -> GenerationConfig:
        """Import configuration from JSON file."""
        with open(filepath, "r") as f:
            data = json.load(f)
        return GenerationConfig.from_dict(data, self.scale_manager)


# Gradio UI

class GradioInterface:
    """Manages the Gradio user interface."""
    
    DESCRIPTION = """
    # 🌲 LLM Forest Orchestra β€” Sonify Transformer Internals
    
    Transform the hidden states and attention patterns of language models into multi-layered musical compositions.
    
    ## πŸ„ Inspiration
    
    This project is inspired by the way **mushrooms and mycelial networks in forests**
    connect plants and trees, forming a living web of communication and resource sharing.
    These connections, can be turned into ethereal music.
    Just as signals move through these hidden connections, transformer models also
    pass hidden states and attentions across their layers. Here, those hidden
    connections are translated into **music**, analogous to the forest's secret orchestra.
    
    ## Features
    - **Two compute modes**: Full model (GPU) or Mock latents (CPU-friendly)
    - **Multiple musical scales**: From pentatonic to chromatic
    - **Instrument presets**: Orchestral, electronic, ensemble, and more
    - **Advanced controls**: Dynamics curves, quantization, velocity ranges
    - **Export**: Standard MIDI files for further editing in your DAW
    """
    
    EXAMPLE_TEXT = """Joy cascades in golden waterfalls, crashing into pools of melancholy blue.
    Anger burns red through veins of marble, while serenity floats on clouds of softest grey.
    Love pulses in waves of crimson and rose, intertwining with longing's purple haze.
    Each feeling resonates at its own frequency, painting music across the soul's canvas."""
    
    def __init__(self, orchestra: LLMForestOrchestra):
        """Initialize the interface."""
        self.orchestra = orchestra
    
    def create_interface(self) -> gr.Blocks:
        """Create the Gradio interface."""
        with gr.Blocks(title="LLM Forest Orchestra", theme=gr.themes.Soft()) as demo:
            gr.Markdown(self.DESCRIPTION)
            
            with gr.Tabs():
                with gr.TabItem("🎡 Generate Music"):
                    self._create_generation_tab()
            
            return demo
    
    def _create_generation_tab(self):
        """Create the main generation tab."""
        with gr.Row():
            with gr.Column(scale=1):
                text_input = gr.Textbox(
                    value=self.EXAMPLE_TEXT,
                    label="Input Text",
                    lines=8,
                    placeholder="Enter text to sonify..."
                )
                
                model_name = gr.Textbox(
                    value=self.orchestra.DEFAULT_MODEL,
                    label="Hugging Face Model",
                    info="Model must support output_hidden_states and output_attentions"
                )
                
                compute_mode = gr.Radio(
                    choices=["Full model", "Mock latents"],
                    value="Mock latents",
                    label="Compute Mode",
                    info="Mock latents for quick CPU-only demo"
                )
                
                with gr.Row():
                    instrument_preset = gr.Dropdown(
                        choices=self.orchestra.instrument_manager.list_presets(),
                        value="Ensemble (melody+bass+pad etc.)",
                        label="Instrument Preset"
                    )
                    
                    scale_choice = gr.Dropdown(
                        choices=self.orchestra.scale_manager.list_scales() + ["Custom"],
                        value="C pentatonic",
                        label="Musical Scale"
                    )
                
                custom_scale = gr.Textbox(
                    value="",
                    label="Custom Scale Notes",
                    placeholder="60,62,65,67,70",
                    visible=False
                )
                
                with gr.Row():
                    base_tempo = gr.Slider(
                        120, 960,
                        value=480,
                        step=1,
                        label="Tempo (ticks per beat)"
                    )
                    
                    num_layers = gr.Slider(
                        1, 6,
                        value=6,
                        step=1,
                        label="Max Layers"
                    )
                
                with gr.Row():
                    velocity_low = gr.Slider(
                        1, 126,
                        value=40,
                        step=1,
                        label="Min Velocity"
                    )
                    
                    velocity_high = gr.Slider(
                        2, 127,
                        value=90,
                        step=1,
                        label="Max Velocity"
                    )
                
                seed = gr.Number(
                    value=42,
                    precision=0,
                    label="Random Seed"
                )
                
                generate_btn = gr.Button(
                    "🎼 Generate MIDI",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                midi_output = gr.File(
                    label="Generated MIDI File",
                    file_types=[".mid", ".midi"]
                )
                
                stats_display = gr.Markdown(label="Quick Stats")
                
                metadata_json = gr.Code(
                    label="Metadata (JSON)",
                    language="json"
                )
                
                with gr.Row():
                    play_instructions = gr.Markdown(
                        """
                        ### 🎧 How to Play
                        1. Download the MIDI file
                        2. Open in any DAW or MIDI player
                        3. Adjust instruments and effects as desired
                        4. Export to audio format
                        """
                    )
        
        # Set up interactions
        def update_custom_scale_visibility(choice):
            return gr.update(visible=(choice == "Custom"))
        
        scale_choice.change(
            update_custom_scale_visibility,
            inputs=[scale_choice],
            outputs=[custom_scale]
        )
        
        def generate_wrapper(
            text, model_name, compute_mode, base_tempo,
            velocity_low, velocity_high, scale_choice,
            custom_scale, num_layers, instrument_preset, seed
        ):
            """Wrapper for generation with error handling."""
            try:
                # Parse custom scale if needed
                custom_notes = None
                if scale_choice == "Custom" and custom_scale:
                    custom_notes = [int(x.strip()) for x in custom_scale.split(",")]
                
                # Generate
                filename, metadata = self.orchestra.generate(
                    text=text,
                    model_name=model_name,
                    compute_mode=compute_mode,
                    base_tempo=int(base_tempo),
                    velocity_range=(int(velocity_low), int(velocity_high)),
                    scale_name=scale_choice,
                    custom_scale_notes=custom_notes,
                    num_layers=int(num_layers),
                    instrument_preset=instrument_preset,
                    seed=int(seed)
                )
                
                # Format stats
                stats = metadata.get("stats", {})
                stats_text = f"""
                ### Generation Statistics
                - **Layers Used**: {stats.get('num_layers', 'N/A')}
                - **Tokens Processed**: {stats.get('num_tokens', 'N/A')}
                - **Total Notes**: {stats.get('total_notes', 'N/A')}
                - **Notes per Layer**: {stats.get('notes_per_layer', [])}
                - **Scale**: {stats.get('scale', [])}
                - **Tempo**: {stats.get('tempo_ticks_per_beat', 'N/A')} ticks/beat
                """
                
                return filename, stats_text, json.dumps(metadata, indent=2)
                
            except Exception as e:
                error_msg = f"### ❌ Error\n{str(e)}"
                return None, error_msg, json.dumps({"error": str(e)}, indent=2)
        
        generate_btn.click(
            fn=generate_wrapper,
            inputs=[
                text_input, model_name, compute_mode, base_tempo,
                velocity_low, velocity_high, scale_choice,
                custom_scale, num_layers, instrument_preset, seed
            ],
            outputs=[midi_output, stats_display, metadata_json]
        )


# Main Entry Point

def main():
    """Main entry point for the application."""
    # Initialize orchestra
    orchestra = LLMForestOrchestra()
    
    # Create interface
    interface = GradioInterface(orchestra)
    demo = interface.create_interface()
    
    # Launch
    demo.launch()


if __name__ == "__main__":
    main()