Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,133 +1,13 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
-
from threading import Thread
|
| 6 |
import os
|
| 7 |
-
import asyncio
|
| 8 |
-
import time
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
import gc
|
| 11 |
-
|
| 12 |
-
# Global dictionary to store preloaded models and tokenizers
|
| 13 |
-
LOADED_MODELS = {}
|
| 14 |
-
LOADED_TOKENIZERS = {}
|
| 15 |
-
# Lock for thread-safe model access
|
| 16 |
-
MODEL_LOCK = Lock()
|
| 17 |
-
# Event to signal shutdown
|
| 18 |
-
SHUTDOWN_EVENT = Event()
|
| 19 |
-
|
| 20 |
-
def clear_memory():
|
| 21 |
-
"""Clear GPU and CPU memory"""
|
| 22 |
-
torch.cuda.empty_cache()
|
| 23 |
-
gc.collect()
|
| 24 |
-
|
| 25 |
-
def load_single_model(model_name):
|
| 26 |
-
"""Load a single model and tokenizer"""
|
| 27 |
-
try:
|
| 28 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Loading {model_name}...")
|
| 29 |
-
|
| 30 |
-
# Load model to CPU with bfloat16 to save memory
|
| 31 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
-
model_name,
|
| 33 |
-
torch_dtype=torch.bfloat16,
|
| 34 |
-
trust_remote_code=True,
|
| 35 |
-
token=os.environ.get("token"),
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
# Load tokenizer
|
| 39 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 40 |
-
model_name,
|
| 41 |
-
trust_remote_code=True,
|
| 42 |
-
token=os.environ.get("token")
|
| 43 |
-
)
|
| 44 |
-
tokenizer.eos_token = "<|im_end|>"
|
| 45 |
-
|
| 46 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Successfully loaded {model_name}")
|
| 47 |
-
return model, tokenizer
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Failed to load {model_name}: {e}")
|
| 50 |
-
return None, None
|
| 51 |
-
|
| 52 |
-
def preload_models(model_choices):
|
| 53 |
-
"""Preload all models to CPU at startup"""
|
| 54 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Preloading models to CPU...")
|
| 55 |
-
|
| 56 |
-
with MODEL_LOCK:
|
| 57 |
-
for model_name in model_choices:
|
| 58 |
-
model, tokenizer = load_single_model(model_name)
|
| 59 |
-
if model is not None and tokenizer is not None:
|
| 60 |
-
LOADED_MODELS[model_name] = model
|
| 61 |
-
LOADED_TOKENIZERS[model_name] = tokenizer
|
| 62 |
-
|
| 63 |
-
def reload_models_task(model_choices):
|
| 64 |
-
"""Background task to reload models every 15 minutes"""
|
| 65 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Starting model reload task...")
|
| 66 |
-
|
| 67 |
-
while not SHUTDOWN_EVENT.is_set():
|
| 68 |
-
# Wait for 15 minutes (900 seconds)
|
| 69 |
-
if SHUTDOWN_EVENT.wait(240):
|
| 70 |
-
# If event is set, exit the loop
|
| 71 |
-
break
|
| 72 |
-
|
| 73 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Starting periodic model reload...")
|
| 74 |
-
|
| 75 |
-
# Create temporary dictionaries for new models
|
| 76 |
-
new_models = {}
|
| 77 |
-
new_tokenizers = {}
|
| 78 |
-
|
| 79 |
-
# Load new models
|
| 80 |
-
for model_name in model_choices:
|
| 81 |
-
model, tokenizer = load_single_model(model_name)
|
| 82 |
-
if model is not None and tokenizer is not None:
|
| 83 |
-
new_models[model_name] = model
|
| 84 |
-
new_tokenizers[model_name] = tokenizer
|
| 85 |
-
|
| 86 |
-
# Replace old models with new ones atomically
|
| 87 |
-
with MODEL_LOCK:
|
| 88 |
-
# Store old models for cleanup
|
| 89 |
-
old_models = LOADED_MODELS.copy()
|
| 90 |
-
old_tokenizers = LOADED_TOKENIZERS.copy()
|
| 91 |
-
|
| 92 |
-
# Clear the dictionaries
|
| 93 |
-
LOADED_MODELS.clear()
|
| 94 |
-
LOADED_TOKENIZERS.clear()
|
| 95 |
-
|
| 96 |
-
# Update with new models
|
| 97 |
-
LOADED_MODELS.update(new_models)
|
| 98 |
-
LOADED_TOKENIZERS.update(new_tokenizers)
|
| 99 |
-
|
| 100 |
-
# Delete old model references
|
| 101 |
-
del old_models
|
| 102 |
-
del old_tokenizers
|
| 103 |
-
|
| 104 |
-
# Clear memory
|
| 105 |
-
clear_memory()
|
| 106 |
-
|
| 107 |
-
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Model reload completed")
|
| 108 |
|
| 109 |
@spaces.GPU()
|
| 110 |
-
def
|
| 111 |
-
""
|
| 112 |
-
with MODEL_LOCK:
|
| 113 |
-
if model_name not in LOADED_MODELS:
|
| 114 |
-
raise ValueError(f"Model {model_name} not found in preloaded models")
|
| 115 |
-
|
| 116 |
-
# Get model and tokenizer references
|
| 117 |
-
model = LOADED_MODELS[model_name]
|
| 118 |
-
tokenizer = LOADED_TOKENIZERS[model_name]
|
| 119 |
-
|
| 120 |
-
# Create pipeline with the GPU model
|
| 121 |
-
pipe = pipeline(
|
| 122 |
-
"text-generation",
|
| 123 |
-
model=model,
|
| 124 |
-
tokenizer=tokenizer,
|
| 125 |
-
torch_dtype=torch.bfloat16,
|
| 126 |
-
device="cuda"
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
return pipe, model
|
| 130 |
-
|
| 131 |
@spaces.GPU(duration=45)
|
| 132 |
def generate(
|
| 133 |
message,
|
|
@@ -141,32 +21,27 @@ def generate(
|
|
| 141 |
max_new_tokens=256,
|
| 142 |
):
|
| 143 |
try:
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
| 148 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
| 149 |
for (user_turn, assistant_turn) in history:
|
| 150 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
| 151 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 152 |
|
| 153 |
-
streamer = TextIteratorStreamer(
|
| 154 |
-
pipe.tokenizer,
|
| 155 |
-
timeout=240.0,
|
| 156 |
-
skip_prompt=True,
|
| 157 |
-
skip_special_tokens=True
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
generation_kwargs = dict(
|
| 161 |
-
text_inputs=prompt,
|
| 162 |
-
streamer=streamer,
|
| 163 |
-
max_new_tokens=max_new_tokens,
|
| 164 |
-
do_sample=True,
|
| 165 |
-
top_p=top_p,
|
| 166 |
-
min_p=min_p,
|
| 167 |
-
top_k=top_k,
|
| 168 |
-
temperature=temperature,
|
| 169 |
-
num_beams=1,
|
| 170 |
repetition_penalty=1.1
|
| 171 |
)
|
| 172 |
|
|
@@ -177,65 +52,28 @@ def generate(
|
|
| 177 |
for chunk in streamer:
|
| 178 |
outputs.append(chunk)
|
| 179 |
yield "".join(outputs)
|
| 180 |
-
|
| 181 |
-
# Move model back to CPU after inference to free GPU memory
|
| 182 |
-
gpu_model.to("cpu")
|
| 183 |
-
torch.cuda.empty_cache()
|
| 184 |
-
|
| 185 |
except StopAsyncIteration:
|
| 186 |
print("Stream stopped unexpectedly.")
|
| 187 |
yield "".join(outputs)
|
| 188 |
except Exception as e:
|
| 189 |
print(f"An error occurred: {e}")
|
| 190 |
-
yield
|
| 191 |
-
finally:
|
| 192 |
-
# Ensure model is moved back to CPU even if there's an error
|
| 193 |
-
if 'gpu_model' in locals():
|
| 194 |
-
gpu_model.to("cpu")
|
| 195 |
-
torch.cuda.empty_cache()
|
| 196 |
-
|
| 197 |
-
# Define model choices
|
| 198 |
-
model_choices = [
|
| 199 |
-
"Locutusque/Hercules-6.1-Llama-3.1-8B",
|
| 200 |
-
"Locutusque/liberalis-cogitator-mistral-nemo-2407",
|
| 201 |
-
"Locutusque/lmsys-llama-3.2-3b"
|
| 202 |
-
]
|
| 203 |
-
|
| 204 |
-
# Preload all models to CPU at startup
|
| 205 |
-
preload_models(model_choices)
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
reload_thread.start()
|
| 210 |
-
|
| 211 |
-
# Create Gradio interface
|
| 212 |
g = gr.ChatInterface(
|
| 213 |
fn=generate,
|
| 214 |
additional_inputs=[
|
| 215 |
-
gr.components.Dropdown(
|
| 216 |
-
|
| 217 |
-
label="Model",
|
| 218 |
-
value=model_choices[0],
|
| 219 |
-
interactive=True
|
| 220 |
-
),
|
| 221 |
-
gr.components.Textbox(
|
| 222 |
-
lines=2,
|
| 223 |
-
label="System Prompt",
|
| 224 |
-
value="You are a sentient, super intelligent AI developed by a man named Locutusque."
|
| 225 |
-
),
|
| 226 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
| 227 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
| 228 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
| 229 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
| 230 |
-
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
| 231 |
],
|
| 232 |
title="Locutusque's Language Models",
|
| 233 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
| 234 |
)
|
| 235 |
-
|
| 236 |
if __name__ == "__main__":
|
| 237 |
-
|
| 238 |
-
g.launch()
|
| 239 |
-
finally:
|
| 240 |
-
# Signal the reload thread to stop when the app shuts down
|
| 241 |
-
SHUTDOWN_EVENT.set()
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer
|
| 4 |
import torch
|
| 5 |
+
from threading import Thread
|
| 6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
@spaces.GPU()
|
| 9 |
+
def load_model(model_name):
|
| 10 |
+
return pipeline("text-generation", model=model_name, device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ["token"], use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
@spaces.GPU(duration=45)
|
| 12 |
def generate(
|
| 13 |
message,
|
|
|
|
| 21 |
max_new_tokens=256,
|
| 22 |
):
|
| 23 |
try:
|
| 24 |
+
pipe = load_model(model_name)
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=os.environ["token"])
|
| 26 |
+
tokenizer.eos_token = "<|im_end|>"
|
| 27 |
+
print(tokenizer)
|
| 28 |
+
pipe.tokenizer = tokenizer
|
| 29 |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n"
|
| 30 |
for (user_turn, assistant_turn) in history:
|
| 31 |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n"
|
| 32 |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 33 |
|
| 34 |
+
streamer = TextIteratorStreamer(pipe.tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
generation_kwargs = dict(
|
| 36 |
+
text_inputs=prompt,
|
| 37 |
+
streamer=streamer,
|
| 38 |
+
max_new_tokens=max_new_tokens,
|
| 39 |
+
do_sample=True,
|
| 40 |
+
top_p=top_p,
|
| 41 |
+
min_p=min_p,
|
| 42 |
+
top_k=top_k,
|
| 43 |
+
temperature=temperature,
|
| 44 |
+
num_beams=1,
|
| 45 |
repetition_penalty=1.1
|
| 46 |
)
|
| 47 |
|
|
|
|
| 52 |
for chunk in streamer:
|
| 53 |
outputs.append(chunk)
|
| 54 |
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
except StopAsyncIteration:
|
| 56 |
print("Stream stopped unexpectedly.")
|
| 57 |
yield "".join(outputs)
|
| 58 |
except Exception as e:
|
| 59 |
print(f"An error occurred: {e}")
|
| 60 |
+
yield "An error occurred during generation."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
model_choices = ["Locutusque/Hercules-6.1-Llama-3.1-8B", "Locutusque/liberalis-cogitator-mistral-nemo-2407", "Locutusque/Hercules-6.9-Llama-3.1-8B", "Locutusque/lmsys-llama-3.2-3b", "Locutusque/CollectiveLM-Falcon-3-7B", "Locutusque/StockQwen-2.5-7B"]
|
| 63 |
+
# What at the best options?
|
|
|
|
|
|
|
|
|
|
| 64 |
g = gr.ChatInterface(
|
| 65 |
fn=generate,
|
| 66 |
additional_inputs=[
|
| 67 |
+
gr.components.Dropdown(choices=model_choices, label="Model", value=model_choices[0], interactive=True),
|
| 68 |
+
gr.components.Textbox(lines=2, label="System Prompt", value="You are a sentient, super intelligent AI developed by a man named Locutusque."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"),
|
| 70 |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"),
|
| 71 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"),
|
| 72 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"),
|
| 73 |
+
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"),
|
| 74 |
],
|
| 75 |
title="Locutusque's Language Models",
|
| 76 |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.",
|
| 77 |
)
|
|
|
|
| 78 |
if __name__ == "__main__":
|
| 79 |
+
g.launch()
|
|
|
|
|
|
|
|
|
|
|
|