|
|
import torch |
|
|
import math |
|
|
|
|
|
from torch.optim import Adam |
|
|
from torch.optim.optimizer import Optimizer |
|
|
from utils.class_registry import ClassRegistry |
|
|
|
|
|
optimizers = ClassRegistry() |
|
|
|
|
|
|
|
|
@optimizers.add_to_registry("adam", stop_args=("self", "params")) |
|
|
class Adam(Adam): |
|
|
def __init__( |
|
|
self, |
|
|
params, |
|
|
lr=1e-4, |
|
|
betas=(0.9, 0.999), |
|
|
eps=1e-8, |
|
|
weight_decay=0, |
|
|
amsgrad=False, |
|
|
): |
|
|
super().__init__(params, lr, tuple(betas), eps, weight_decay, amsgrad) |
|
|
|
|
|
|
|
|
@optimizers.add_to_registry(name="ranger", stop_args=("self", "params")) |
|
|
class Ranger(Optimizer): |
|
|
def __init__( |
|
|
self, |
|
|
params, |
|
|
lr=1e-4, |
|
|
alpha=0.5, |
|
|
k=6, |
|
|
N_sma_threshhold=5, |
|
|
betas=(0.95, 0.999), |
|
|
eps=1e-5, |
|
|
weight_decay=0, |
|
|
use_gc=True, |
|
|
gc_conv_only=False |
|
|
|
|
|
): |
|
|
|
|
|
|
|
|
assert params is not None |
|
|
if not 0.0 <= alpha <= 1.0: |
|
|
raise ValueError(f"Invalid slow update rate: {alpha}") |
|
|
if not 1 <= k: |
|
|
raise ValueError(f"Invalid lookahead steps: {k}") |
|
|
if not lr > 0: |
|
|
raise ValueError(f"Invalid Learning Rate: {lr}") |
|
|
if not eps > 0: |
|
|
raise ValueError(f"Invalid eps: {eps}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
betas = tuple(betas) |
|
|
defaults = dict( |
|
|
lr=lr, |
|
|
alpha=alpha, |
|
|
k=k, |
|
|
step_counter=0, |
|
|
betas=betas, |
|
|
N_sma_threshhold=N_sma_threshhold, |
|
|
eps=eps, |
|
|
weight_decay=weight_decay, |
|
|
) |
|
|
super().__init__(params, defaults) |
|
|
|
|
|
|
|
|
self.N_sma_threshhold = N_sma_threshhold |
|
|
|
|
|
|
|
|
|
|
|
self.alpha = alpha |
|
|
self.k = k |
|
|
|
|
|
|
|
|
self.radam_buffer = [[None, None, None] for ind in range(10)] |
|
|
|
|
|
|
|
|
self.use_gc = use_gc |
|
|
|
|
|
|
|
|
self.gc_gradient_threshold = 3 if gc_conv_only else 1 |
|
|
|
|
|
def __setstate__(self, state): |
|
|
super(Ranger, self).__setstate__(state) |
|
|
|
|
|
def step(self, closure=None): |
|
|
loss = None |
|
|
|
|
|
|
|
|
for group in self.param_groups: |
|
|
|
|
|
for p in group["params"]: |
|
|
if p.grad is None: |
|
|
continue |
|
|
grad = p.grad.data.float() |
|
|
|
|
|
if grad.is_sparse: |
|
|
raise RuntimeError( |
|
|
"Ranger optimizer does not support sparse gradients" |
|
|
) |
|
|
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
|
|
state = self.state[p] |
|
|
|
|
|
if ( |
|
|
len(state) == 0 |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
state["step"] = 0 |
|
|
state["exp_avg"] = torch.zeros_like(p_data_fp32) |
|
|
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) |
|
|
|
|
|
|
|
|
state["slow_buffer"] = torch.empty_like(p.data) |
|
|
state["slow_buffer"].copy_(p.data) |
|
|
|
|
|
else: |
|
|
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) |
|
|
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) |
|
|
|
|
|
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
|
beta1, beta2 = group["betas"] |
|
|
|
|
|
|
|
|
if grad.dim() > self.gc_gradient_threshold: |
|
|
grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True)) |
|
|
|
|
|
state["step"] += 1 |
|
|
|
|
|
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
|
|
|
|
buffered = self.radam_buffer[int(state["step"] % 10)] |
|
|
|
|
|
if state["step"] == buffered[0]: |
|
|
N_sma, step_size = buffered[1], buffered[2] |
|
|
else: |
|
|
buffered[0] = state["step"] |
|
|
beta2_t = beta2 ** state["step"] |
|
|
N_sma_max = 2 / (1 - beta2) - 1 |
|
|
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) |
|
|
buffered[1] = N_sma |
|
|
if N_sma > self.N_sma_threshhold: |
|
|
step_size = math.sqrt( |
|
|
(1 - beta2_t) |
|
|
* (N_sma - 4) |
|
|
/ (N_sma_max - 4) |
|
|
* (N_sma - 2) |
|
|
/ N_sma |
|
|
* N_sma_max |
|
|
/ (N_sma_max - 2) |
|
|
) / (1 - beta1 ** state["step"]) |
|
|
else: |
|
|
step_size = 1.0 / (1 - beta1 ** state["step"]) |
|
|
buffered[2] = step_size |
|
|
|
|
|
if group["weight_decay"] != 0: |
|
|
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) |
|
|
|
|
|
|
|
|
if N_sma > self.N_sma_threshhold: |
|
|
denom = exp_avg_sq.sqrt().add_(group["eps"]) |
|
|
p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom) |
|
|
else: |
|
|
p_data_fp32.add_(-step_size * group["lr"], exp_avg) |
|
|
|
|
|
p.data.copy_(p_data_fp32) |
|
|
|
|
|
|
|
|
|
|
|
if state["step"] % group["k"] == 0: |
|
|
slow_p = state["slow_buffer"] |
|
|
slow_p.add_( |
|
|
self.alpha, p.data - slow_p |
|
|
) |
|
|
p.data.copy_( |
|
|
slow_p |
|
|
) |
|
|
|
|
|
return loss |
|
|
|