object_remover / api /main.py
LogicGoInfotechSpaces's picture
Update api/main.py
02a8b70 verified
import os
import uuid
import shutil
import re
from datetime import datetime, timedelta, date
from io import BytesIO
from typing import Dict, List, Optional,Any
import numpy as np
from fastapi import (
FastAPI,
UploadFile,
File,
HTTPException,
Depends,
Header,
Request,
Form,
)
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
from PIL import Image, UnidentifiedImageError
import cv2
import logging
from gridfs import GridFS
from gridfs.errors import NoFile
from bson import ObjectId
from pymongo import MongoClient
import time
# Load environment variables from .env if present
try:
from dotenv import load_dotenv
load_dotenv()
except Exception:
pass
logging.basicConfig(level=logging.INFO)
log = logging.getLogger("api")
from src.core import process_inpaint
# Directories (use writable space on HF Spaces)
BASE_DIR = os.environ.get("DATA_DIR", "/data")
if not os.path.isdir(BASE_DIR):
# Fallback to /tmp if /data not available
BASE_DIR = "/tmp"
UPLOAD_DIR = os.path.join(BASE_DIR, "uploads")
OUTPUT_DIR = os.path.join(BASE_DIR, "outputs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Optional Bearer token: set env API_TOKEN to require auth; if not set, endpoints are open
ENV_TOKEN = os.environ.get("API_TOKEN")
app = FastAPI(title="Photo Object Removal API", version="1.0.0")
# In-memory stores
file_store: Dict[str, Dict[str, str]] = {}
logs: List[Dict[str, str]] = []
MONGO_URI = os.environ.get("MONGO_URI") or os.environ.get("MONGODB_URI")
mongo_client = None
mongo_db = None
mongo_logs = None
grid_fs = None
if MONGO_URI:
try:
mongo_client = MongoClient(MONGO_URI)
# Try to get database from connection string first
try:
mongo_db = mongo_client.get_default_database()
log.info("Using database from connection string: %s", mongo_db.name)
except Exception as db_err:
mongo_db = None
log.warning("Could not extract database from connection string: %s", db_err)
# Fallback to 'object_remover' if no database in connection string
if mongo_db is None:
mongo_db = mongo_client["object_remover"]
log.info("Using default database: object_remover")
mongo_logs = mongo_db["api_logs"]
grid_fs = GridFS(mongo_db)
log.info("MongoDB connection initialized successfully - Database: %s, Collection: %s", mongo_db.name, mongo_logs.name)
except Exception as err:
log.error("Failed to initialize MongoDB connection: %s", err, exc_info=True)
log.warning("GridFS operations will be disabled. Set MONGO_URI or MONGODB_URI environment variable.")
else:
log.warning("MONGO_URI not set. GridFS operations will be disabled. Upload endpoints will not work.")
ADMIN_MONGO_URI = os.environ.get("MONGODB_ADMIN")
DEFAULT_CATEGORY_ID = "69368f722e46bd68ae188984"
admin_media_clicks = None
def _init_admin_mongo() -> None:
global admin_media_clicks
if not ADMIN_MONGO_URI:
log.info("Admin Mongo URI not provided; media click logging disabled")
return
try:
admin_client = MongoClient(ADMIN_MONGO_URI)
# get_default_database() extracts database from connection string (e.g., /adminPanel)
try:
admin_db = admin_client.get_default_database()
except Exception as db_err:
admin_db = None
log.warning("Admin Mongo URI has no default DB; error=%s", db_err)
if admin_db is None:
# Fallback to provided default for this app
admin_db = admin_client["object_remover"]
log.warning("No database in connection string, defaulting to 'object_remover'")
admin_media_clicks = admin_db["media_clicks"]
log.info(
"Admin media click logging initialized: db=%s collection=%s",
admin_db.name,
admin_media_clicks.name,
)
try:
admin_media_clicks.drop_index("user_id_1_header_1_media_id_1")
log.info("Dropped legacy index user_id_1_header_1_media_id_1")
except Exception as idx_err:
# Index drop failure is non-critical (often permission issue)
if "Unauthorized" not in str(idx_err):
log.info("Skipping legacy index drop: %s", idx_err)
except Exception as err:
log.error("Failed to init admin Mongo client: %s", err)
admin_media_clicks = None
_init_admin_mongo()
def _admin_logging_status() -> Dict[str, object]:
if admin_media_clicks is None:
return {
"enabled": False,
"db": None,
"collection": None,
}
return {
"enabled": True,
"db": admin_media_clicks.database.name,
"collection": admin_media_clicks.name,
}
def _save_upload_to_gridfs(upload: UploadFile, file_type: str) -> str:
"""Store an uploaded file into GridFS and return its ObjectId string."""
if grid_fs is None:
raise HTTPException(
status_code=503,
detail="MongoDB/GridFS not configured. Set MONGO_URI or MONGODB_URI environment variable."
)
data = upload.file.read()
if not data:
raise HTTPException(status_code=400, detail=f"{file_type} file is empty")
oid = grid_fs.put(
data,
filename=upload.filename or f"{file_type}.bin",
contentType=upload.content_type,
metadata={"type": file_type},
)
return str(oid)
def _read_gridfs_bytes(file_id: str, expected_type: str) -> bytes:
"""Fetch raw bytes from GridFS and validate the stored type metadata."""
if grid_fs is None:
raise HTTPException(
status_code=503,
detail="MongoDB/GridFS not configured. Set MONGO_URI or MONGODB_URI environment variable."
)
try:
oid = ObjectId(file_id)
except Exception:
raise HTTPException(status_code=404, detail=f"{expected_type}_id invalid")
try:
grid_out = grid_fs.get(oid)
except NoFile:
raise HTTPException(status_code=404, detail=f"{expected_type}_id not found")
meta = grid_out.metadata or {}
stored_type = meta.get("type")
if stored_type and stored_type != expected_type:
raise HTTPException(status_code=404, detail=f"{expected_type}_id not found")
return grid_out.read()
def _load_rgba_image_from_gridfs(file_id: str, expected_type: str) -> Image.Image:
"""Load an image from GridFS and convert to RGBA."""
data = _read_gridfs_bytes(file_id, expected_type)
try:
img = Image.open(BytesIO(data))
except UnidentifiedImageError:
raise HTTPException(status_code=422, detail=f"{expected_type} is not a valid image")
return img.convert("RGBA")
def _build_ai_edit_daily_count(
existing: Optional[List[Dict[str, object]]],
today: date,
) -> List[Dict[str, object]]:
"""
Build / extend the ai_edit_daily_count array with the following rules:
- Case A (no existing data): return [{date: today, count: 1}]
- Case B (today already recorded): return list unchanged
- Case C (gap in days): fill missing days with count=0 and append today with count=1
Additionally, the returned list is capped to the most recent 32 entries.
The stored "date" value is a midnight UTC (naive UTC) datetime for the given day.
"""
def _to_date_only(value: object) -> date:
if isinstance(value, datetime):
return value.date()
if isinstance(value, date):
return value
# Fallback: try parsing ISO string "YYYY-MM-DD" or full datetime
try:
text = str(value)
if len(text) == 10:
return datetime.strptime(text, "%Y-%m-%d").date()
return datetime.fromisoformat(text).date()
except Exception:
# If parsing fails, just treat as today to avoid crashing
return today
# Case A: first ever use (no array yet)
if not existing:
return [
{
"date": datetime(today.year, today.month, today.day),
"count": 1,
}
]
# Work on a shallow copy so we don't mutate original in-place
result: List[Dict[str, object]] = list(existing)
last_entry = result[-1] if result else None
if not last_entry or "date" not in last_entry:
# If structure is unexpected, re-initialize safely
return [
{
"date": datetime(today.year, today.month, today.day),
"count": 1,
}
]
last_date = _to_date_only(last_entry["date"])
# If somehow the last stored date is in the future, do nothing to avoid corrupting history
if last_date > today:
return result
# Case B: today's date already present as the last entry → unchanged
if last_date == today:
return result
# Case C: there is a gap, fill missing days with count=0 and append today with count=1
cursor = last_date + timedelta(days=1)
while cursor < today:
result.append(
{
"date": datetime(cursor.year, cursor.month, cursor.day),
"count": 0,
}
)
cursor += timedelta(days=1)
# Finally add today's presence indicator
result.append(
{
"date": datetime(today.year, today.month, today.day),
"count": 1,
}
)
# Sort by date ascending (older dates first) to guarantee stable ordering:
# [oldest, ..., newest]
try:
result.sort(key=lambda entry: _to_date_only(entry.get("date")))
except Exception:
# If anything goes wrong during sort, fall back to current ordering
pass
# Enforce 32-entry limit (keep the most recent 32 days)
if len(result) > 32:
result = result[-32:]
return result
def bearer_auth(authorization: Optional[str] = Header(default=None)) -> None:
if not ENV_TOKEN:
return
if authorization is None or not authorization.lower().startswith("bearer "):
raise HTTPException(status_code=401, detail="Unauthorized")
token = authorization.split(" ", 1)[1]
if token != ENV_TOKEN:
raise HTTPException(status_code=403, detail="Forbidden")
class InpaintRequest(BaseModel):
image_id: str
mask_id: str
invert_mask: bool = True # True => selected/painted area is removed
passthrough: bool = False # If True, return the original image unchanged
prompt: Optional[str] = None # Optional: describe what to remove
user_id: Optional[str] = None
category_id: Optional[str] = None
class SimpleRemoveRequest(BaseModel):
image_id: str # Image with pink/magenta segments to remove
def _coerce_object_id(value: Optional[str]) -> ObjectId:
if value is None:
return ObjectId()
value_str = str(value).strip()
if re.fullmatch(r"[0-9a-fA-F]{24}", value_str):
return ObjectId(value_str)
if value_str.isdigit():
hex_str = format(int(value_str), "x")
if len(hex_str) > 24:
hex_str = hex_str[-24:]
hex_str = hex_str.rjust(24, "0")
return ObjectId(hex_str)
return ObjectId()
def _coerce_category_id(category_id: Optional[str]) -> ObjectId:
raw = category_id or DEFAULT_CATEGORY_ID
raw_str = str(raw).strip()
if re.fullmatch(r"[0-9a-fA-F]{24}", raw_str):
return ObjectId(raw_str)
return _coerce_object_id(raw_str)
def log_media_click(user_id: Optional[str], category_id: Optional[str]) -> None:
"""Log to admin media_clicks collection only if user_id is provided."""
if admin_media_clicks is None:
return
# Only log if user_id is provided (not None/empty)
if not user_id or not user_id.strip():
return
try:
user_obj = _coerce_object_id(user_id)
category_obj = _coerce_category_id(category_id)
now = datetime.utcnow()
today = now.date()
doc = admin_media_clicks.find_one({"userId": user_obj})
if doc:
existing_daily = doc.get("ai_edit_daily_count")
updated_daily = _build_ai_edit_daily_count(existing_daily, today)
categories = doc.get("categories") or []
if any(cat.get("categoryId") == category_obj for cat in categories):
# Category exists: increment click_count and ai_edit_complete, update dates
admin_media_clicks.update_one(
{"_id": doc["_id"], "categories.categoryId": category_obj},
{
"$inc": {
"categories.$.click_count": 1,
"ai_edit_complete": 1, # $inc handles missing fields (backward compatible)
},
"$set": {
"categories.$.lastClickedAt": now,
"updatedAt": now,
"ai_edit_last_date": now,
"ai_edit_daily_count": updated_daily,
},
},
)
else:
# New category to existing document: push category, increment ai_edit_complete
admin_media_clicks.update_one(
{"_id": doc["_id"]},
{
"$push": {
"categories": {
"categoryId": category_obj,
"click_count": 1,
"lastClickedAt": now,
}
},
"$inc": {"ai_edit_complete": 1}, # $inc handles missing fields
"$set": {
"updatedAt": now,
"ai_edit_last_date": now,
"ai_edit_daily_count": updated_daily,
},
},
)
else:
# New user: create document with default ai_edit_complete=0, then increment to 1
daily_for_new = _build_ai_edit_daily_count(None, today)
admin_media_clicks.update_one(
{"userId": user_obj},
{
"$setOnInsert": {
"userId": user_obj,
"categories": [
{
"categoryId": category_obj,
"click_count": 1,
"lastClickedAt": now,
}
],
"createdAt": now,
"ai_edit_daily_count": daily_for_new,
},
"$inc": {"ai_edit_complete": 1}, # Increment to 1 on first use
"$set": {
"updatedAt": now,
"ai_edit_last_date": now,
},
},
upsert=True,
)
except Exception as err:
err_str = str(err)
if "Unauthorized" in err_str or "not authorized" in err_str.lower():
log.warning(
"Admin media click logging failed (permissions): user lacks read/write on db=%s collection=%s. "
"Check MongoDB user permissions.",
admin_media_clicks.database.name,
admin_media_clicks.name,
)
else:
log.warning("Admin media click logging failed: %s", err)
@app.get("/")
def root() -> Dict[str, Any]:
return {
"success": True,
"message": "Object Remover API",
"data": {
"version": "1.0.0",
"product_name": "Beauty Camera - GlowCam AI Studio",
"released_by": "LogicGo Infotech"
}
}
@app.get("/health")
def health() -> Dict[str, str]:
return {"status": "healthy"}
@app.get("/logging-status")
def logging_status(_: None = Depends(bearer_auth)) -> Dict[str, object]:
"""Helper endpoint to verify admin media logging wiring (no secrets exposed)."""
return _admin_logging_status()
@app.get("/mongo-status")
def mongo_status(_: None = Depends(bearer_auth)) -> Dict[str, object]:
"""Check MongoDB connection status and verify data storage."""
status = {
"mongo_configured": MONGO_URI is not None,
"mongo_connected": mongo_client is not None,
"database": mongo_db.name if mongo_db else None,
"collection": mongo_logs.name if mongo_logs else None,
"admin_logging": _admin_logging_status(),
}
# Try to count documents in api_logs collection
if mongo_logs is not None:
try:
count = mongo_logs.count_documents({})
status["api_logs_count"] = count
# Get latest 5 documents
latest_docs = list(mongo_logs.find().sort("timestamp", -1).limit(5))
status["recent_logs"] = []
for doc in latest_docs:
doc_dict = {
"_id": str(doc.get("_id")),
"output_id": doc.get("output_id"),
"status": doc.get("status"),
"timestamp": doc.get("timestamp").isoformat() if isinstance(doc.get("timestamp"), datetime) else str(doc.get("timestamp")),
}
if "input_image_id" in doc:
doc_dict["input_image_id"] = doc.get("input_image_id")
if "input_mask_id" in doc:
doc_dict["input_mask_id"] = doc.get("input_mask_id")
if "error" in doc:
doc_dict["error"] = doc.get("error")
status["recent_logs"].append(doc_dict)
# Get latest document for backward compatibility
if latest_docs:
latest = latest_docs[0]
status["latest_log"] = {
"_id": str(latest.get("_id")),
"output_id": latest.get("output_id"),
"status": latest.get("status"),
"timestamp": latest.get("timestamp").isoformat() if isinstance(latest.get("timestamp"), datetime) else str(latest.get("timestamp")),
}
except Exception as err:
status["api_logs_error"] = str(err)
log.error("Error querying MongoDB: %s", err, exc_info=True)
return status
@app.post("/upload-image")
def upload_image(image: UploadFile = File(...), _: None = Depends(bearer_auth)) -> Dict[str, str]:
file_id = _save_upload_to_gridfs(image, "image")
logs.append({"id": file_id, "filename": image.filename, "type": "image", "timestamp": datetime.utcnow().isoformat()})
return {"id": file_id, "filename": image.filename}
@app.post("/upload-mask")
def upload_mask(mask: UploadFile = File(...), _: None = Depends(bearer_auth)) -> Dict[str, str]:
file_id = _save_upload_to_gridfs(mask, "mask")
logs.append({"id": file_id, "filename": mask.filename, "type": "mask", "timestamp": datetime.utcnow().isoformat()})
return {"id": file_id, "filename": mask.filename}
def _compress_image(image_path: str, output_path: str, quality: int = 85) -> None:
"""
Compress an image to reduce file size.
Converts to JPEG format with specified quality to achieve smaller file size.
"""
img = Image.open(image_path)
# Convert RGBA to RGB if needed (JPEG doesn't support alpha)
if img.mode == "RGBA":
rgb_img = Image.new("RGB", img.size, (255, 255, 255))
rgb_img.paste(img, mask=img.split()[3]) # Use alpha channel as mask
img = rgb_img
elif img.mode != "RGB":
img = img.convert("RGB")
# Save as JPEG with quality setting for compression
img.save(output_path, "JPEG", quality=quality, optimize=True)
def _load_rgba_mask_from_image(img: Image.Image) -> np.ndarray:
"""
Convert mask image to RGBA format (black/white mask).
Standard convention: white (255) = area to remove, black (0) = area to keep
Returns RGBA with white in RGB channels where removal is needed, alpha=255
"""
if img.mode != "RGBA":
# For RGB/Grayscale masks: white (value>128) = remove, black (value<=128) = keep
gray = img.convert("L")
arr = np.array(gray)
# Create proper black/white mask: white pixels (>128) = remove, black (<=128) = keep
mask_bw = np.where(arr > 128, 255, 0).astype(np.uint8)
rgba = np.zeros((img.height, img.width, 4), dtype=np.uint8)
rgba[:, :, 0] = mask_bw # R
rgba[:, :, 1] = mask_bw # G
rgba[:, :, 2] = mask_bw # B
rgba[:, :, 3] = 255 # Fully opaque
log.info(f"Loaded {img.mode} mask: {int((mask_bw > 0).sum())} white pixels (to remove)")
return rgba
# For RGBA: check if alpha channel is meaningful
arr = np.array(img)
alpha = arr[:, :, 3]
rgb = arr[:, :, :3]
# If alpha is mostly opaque everywhere (mean > 200), treat RGB channels as mask values
if alpha.mean() > 200:
# Use RGB to determine mask: white/bright in RGB = remove
gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY)
# Also detect magenta specifically
magenta = np.all(rgb == [255, 0, 255], axis=2).astype(np.uint8) * 255
mask_bw = np.maximum(np.where(gray > 128, 255, 0).astype(np.uint8), magenta)
rgba = arr.copy()
rgba[:, :, 0] = mask_bw # R
rgba[:, :, 1] = mask_bw # G
rgba[:, :, 2] = mask_bw # B
rgba[:, :, 3] = 255 # Fully opaque
log.info(f"Loaded RGBA mask (RGB-based): {int((mask_bw > 0).sum())} white pixels (to remove)")
return rgba
# Alpha channel encodes the mask - convert to RGB-based
# Transparent areas (alpha < 128) = remove, Opaque areas = keep
mask_bw = np.where(alpha < 128, 255, 0).astype(np.uint8)
rgba = arr.copy()
rgba[:, :, 0] = mask_bw
rgba[:, :, 1] = mask_bw
rgba[:, :, 2] = mask_bw
rgba[:, :, 3] = 255
log.info(f"Loaded RGBA mask (alpha-based): {int((mask_bw > 0).sum())} white pixels (to remove)")
return rgba
@app.post("/inpaint")
def inpaint(req: InpaintRequest, request: Request, _: None = Depends(bearer_auth)) -> Dict[str, str]:
start_time = time.time()
status = "success"
error_msg = None
output_name = None
compressed_url = None
try:
img_rgba = _load_rgba_image_from_gridfs(req.image_id, "image")
mask_img = _load_rgba_image_from_gridfs(req.mask_id, "mask")
mask_rgba = _load_rgba_mask_from_image(mask_img)
if req.passthrough:
result = np.array(img_rgba.convert("RGB"))
else:
result = process_inpaint(
np.array(img_rgba),
mask_rgba,
invert_mask=req.invert_mask,
prompt=req.prompt,
)
output_name = f"output_{uuid.uuid4().hex}.png"
output_path = os.path.join(OUTPUT_DIR, output_name)
Image.fromarray(result).save(
output_path, "PNG", optimize=False, compress_level=1
)
# Create compressed version
compressed_name = f"compressed_{output_name.replace('.png', '.jpg')}"
compressed_path = os.path.join(OUTPUT_DIR, compressed_name)
try:
_compress_image(output_path, compressed_path, quality=85)
compressed_url = str(request.url_for("download_file", filename=compressed_name))
except Exception as compress_err:
log.warning("Failed to create compressed image: %s", compress_err)
compressed_url = None
log_media_click(req.user_id, req.category_id)
response = {"result": output_name}
if compressed_url:
response["Compressed_Image_URL"] = compressed_url
return response
except Exception as e:
status = "fail"
error_msg = str(e)
raise
finally:
end_time = time.time()
response_time_ms = (end_time - start_time) * 1000
log_doc = {
"input_image_id": req.image_id,
"input_mask_id": req.mask_id,
"output_id": output_name,
"status": status,
"timestamp": datetime.utcnow(),
"ts": int(time.time()),
"response_time_ms": response_time_ms
}
if error_msg:
log_doc["error"] = error_msg
if mongo_logs is not None:
try:
log.info("Inserting log to MongoDB - Database: %s, Collection: %s", mongo_logs.database.name, mongo_logs.name)
log.debug("Log document: %s", log_doc)
result = mongo_logs.insert_one(log_doc)
log.info("Mongo log inserted successfully: _id=%s, output_id=%s, status=%s, db=%s, collection=%s",
result.inserted_id, output_name, status, mongo_logs.database.name, mongo_logs.name)
# Verify the insert by reading it back
try:
verify_doc = mongo_logs.find_one({"_id": result.inserted_id})
if verify_doc:
log.info("Verified: Document exists in MongoDB after insert")
else:
log.error("WARNING: Document not found after insert! _id=%s", result.inserted_id)
except Exception as verify_err:
log.warning("Could not verify insert: %s", verify_err)
except Exception as mongo_err:
log.error("Mongo log insert failed: %s, log_doc=%s", mongo_err, log_doc, exc_info=True)
else:
log.warning("MongoDB not configured, skipping log insert")
# @app.post("/inpaint")
# def inpaint(req: InpaintRequest, _: None = Depends(bearer_auth)) -> Dict[str, str]:
# if req.image_id not in file_store or file_store[req.image_id]["type"] != "image":
# raise HTTPException(status_code=404, detail="image_id not found")
# if req.mask_id not in file_store or file_store[req.mask_id]["type"] != "mask":
# raise HTTPException(status_code=404, detail="mask_id not found")
# img_rgba = _load_rgba_image(file_store[req.image_id]["path"])
# mask_img = Image.open(file_store[req.mask_id]["path"]) # may be RGB/gray/RGBA
# mask_rgba = _load_rgba_mask_from_image(mask_img)
# # Debug: check mask before processing
# white_pixels = int((mask_rgba[:,:,0] > 128).sum())
# log.info(f"Inpaint request: mask has {white_pixels} white pixels, invert_mask={req.invert_mask}")
# if req.passthrough:
# result = np.array(img_rgba.convert("RGB"))
# else:
# result = process_inpaint(np.array(img_rgba), mask_rgba, invert_mask=req.invert_mask)
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# logs.append({"result": result_name, "timestamp": datetime.utcnow().isoformat()})
# return {"result": result_name}
@app.post("/inpaint-url")
def inpaint_url(req: InpaintRequest, request: Request, _: None = Depends(bearer_auth)) -> Dict[str, str]:
"""Same as /inpaint but returns a JSON with a public download URL instead of image bytes."""
start_time = time.time()
status = "success"
error_msg = None
result_name = None
try:
img_rgba = _load_rgba_image_from_gridfs(req.image_id, "image")
mask_img = _load_rgba_image_from_gridfs(req.mask_id, "mask") # may be RGB/gray/RGBA
mask_rgba = _load_rgba_mask_from_image(mask_img)
if req.passthrough:
result = np.array(img_rgba.convert("RGB"))
else:
result = process_inpaint(
np.array(img_rgba),
mask_rgba,
invert_mask=req.invert_mask,
prompt=req.prompt,
)
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
url = str(request.url_for("download_file", filename=result_name))
logs.append({"result": result_name, "url": url, "timestamp": datetime.utcnow().isoformat()})
log_media_click(req.user_id, req.category_id)
return {"result": result_name, "url": url}
except Exception as e:
status = "fail"
error_msg = str(e)
raise
finally:
# Always log to regular MongoDB (mandatory)
end_time = time.time()
response_time_ms = (end_time - start_time) * 1000
log_doc = {
"input_image_id": req.image_id,
"input_mask_id": req.mask_id,
"output_id": result_name,
"status": status,
"timestamp": datetime.utcnow(),
"ts": int(time.time()),
"response_time_ms": response_time_ms,
}
if error_msg:
log_doc["error"] = error_msg
if mongo_logs is not None:
try:
log.info("Inserting log to MongoDB - Database: %s, Collection: %s", mongo_logs.database.name, mongo_logs.name)
result = mongo_logs.insert_one(log_doc)
log.info("Mongo log inserted successfully: _id=%s, output_id=%s, status=%s, db=%s, collection=%s",
result.inserted_id, output_name, status, mongo_logs.database.name, mongo_logs.name)
# Verify the insert by reading it back
try:
verify_doc = mongo_logs.find_one({"_id": result.inserted_id})
if verify_doc:
log.info("Verified: Document exists in MongoDB after insert")
else:
log.error("WARNING: Document not found after insert! _id=%s", result.inserted_id)
except Exception as verify_err:
log.warning("Could not verify insert: %s", verify_err)
except Exception as mongo_err:
log.error("Mongo log insert failed: %s, log_doc=%s", mongo_err, log_doc, exc_info=True)
else:
log.warning("MongoDB not configured, skipping log insert")
@app.post("/inpaint-multipart")
def inpaint_multipart(
image: UploadFile = File(...),
mask: UploadFile = File(...),
request: Request = None,
invert_mask: bool = True,
mask_is_painted: bool = False, # if True, mask file is the painted-on image (e.g., black strokes on original)
passthrough: bool = False,
prompt: Optional[str] = Form(None),
user_id: Optional[str] = Form(None),
category_id: Optional[str] = Form(None),
_: None = Depends(bearer_auth),
) -> Dict[str, str]:
start_time = time.time()
status = "success"
error_msg = None
result_name = None
try:
# Load in-memory
img = Image.open(image.file).convert("RGBA")
m = Image.open(mask.file).convert("RGBA")
if passthrough:
# Just echo the input image, ignore mask
result = np.array(img.convert("RGB"))
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
url: Optional[str] = None
try:
if request is not None:
url = str(request.url_for("download_file", filename=result_name))
except Exception:
url = None
entry: Dict[str, str] = {"result": result_name, "timestamp": datetime.utcnow().isoformat()}
if url:
entry["url"] = url
logs.append(entry)
resp: Dict[str, str] = {"result": result_name}
if url:
resp["url"] = url
log_media_click(user_id, category_id)
return resp
if mask_is_painted:
# Auto-detect pink/magenta paint and convert to black/white mask
# White pixels = areas to remove, Black pixels = areas to keep
log.info("Auto-detecting pink/magenta paint from uploaded image...")
m_rgb = cv2.cvtColor(np.array(m), cv2.COLOR_RGBA2RGB)
# Detect pink/magenta using fixed RGB bounds (same as /remove-pink)
lower = np.array([150, 0, 100], dtype=np.uint8)
upper = np.array([255, 120, 255], dtype=np.uint8)
magenta_detected = (
(m_rgb[:, :, 0] >= lower[0]) & (m_rgb[:, :, 0] <= upper[0]) &
(m_rgb[:, :, 1] >= lower[1]) & (m_rgb[:, :, 1] <= upper[1]) &
(m_rgb[:, :, 2] >= lower[2]) & (m_rgb[:, :, 2] <= upper[2])
).astype(np.uint8) * 255
# Method 2: Also check if original image was provided to find differences
if img is not None:
img_rgb = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2RGB)
if img_rgb.shape == m_rgb.shape:
diff = cv2.absdiff(img_rgb, m_rgb)
gray_diff = cv2.cvtColor(diff, cv2.COLOR_RGB2GRAY)
# Any significant difference (>50) could be paint
diff_mask = (gray_diff > 50).astype(np.uint8) * 255
# Combine with magenta detection
binmask = cv2.bitwise_or(magenta_detected, diff_mask)
else:
binmask = magenta_detected
else:
# No original image provided, use magenta detection only
binmask = magenta_detected
# Clean up the mask: remove noise and fill small holes
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
# Close small gaps in the mask
binmask = cv2.morphologyEx(binmask, cv2.MORPH_CLOSE, kernel, iterations=2)
# Remove small noise
binmask = cv2.morphologyEx(binmask, cv2.MORPH_OPEN, kernel, iterations=1)
nonzero = int((binmask > 0).sum())
log.info("Pink/magenta paint detected: %d pixels marked for removal (white)", nonzero)
# If very few pixels detected, assume the user may already be providing a BW mask
# and proceed without forcing strict detection
if nonzero < 50:
log.error("CRITICAL: Could not detect pink/magenta paint! Returning original image.")
result = np.array(img.convert("RGB")) if img else np.array(m.convert("RGB"))
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
return {"result": result_name, "error": "pink/magenta paint detection failed - very few pixels detected"}
# Create binary mask: Pink pixels → white (255), Everything else → black (0)
# Encode in RGBA format for process_inpaint
# process_inpaint does: mask = 255 - mask[:,:,3]
# So: alpha=0 (transparent/pink) → becomes 255 (white/remove)
# alpha=255 (opaque/keep) → becomes 0 (black/keep)
mask_rgba = np.zeros((binmask.shape[0], binmask.shape[1], 4), dtype=np.uint8)
mask_rgba[:, :, 0] = binmask # R: white where pink (for visualization)
mask_rgba[:, :, 1] = binmask # G: white where pink
mask_rgba[:, :, 2] = binmask # B: white where pink
# Alpha: invert so pink areas get alpha=0 → will become white after 255-alpha
mask_rgba[:, :, 3] = 255 - binmask
log.info("Successfully created binary mask: %d pink pixels → white (255), %d pixels → black (0)",
nonzero, binmask.shape[0] * binmask.shape[1] - nonzero)
else:
mask_rgba = _load_rgba_mask_from_image(m)
# When mask_is_painted=true, we encode pink as alpha=0, so process_inpaint's default invert_mask=True works correctly
actual_invert = invert_mask # Use default True for painted masks
log.info("Using invert_mask=%s (mask_is_painted=%s)", actual_invert, mask_is_painted)
result = process_inpaint(
np.array(img),
mask_rgba,
invert_mask=actual_invert,
prompt=prompt,
)
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
url: Optional[str] = None
try:
if request is not None:
url = str(request.url_for("download_file", filename=result_name))
except Exception:
url = None
entry: Dict[str, str] = {"result": result_name, "timestamp": datetime.utcnow().isoformat()}
if url:
entry["url"] = url
logs.append(entry)
resp: Dict[str, str] = {"result": result_name}
if url:
resp["url"] = url
log_media_click(user_id, category_id)
return resp
except Exception as e:
status = "fail"
error_msg = str(e)
raise
finally:
# Always log to regular MongoDB (mandatory)
end_time = time.time()
response_time_ms = (end_time - start_time) * 1000
log_doc = {
"endpoint": "inpaint-multipart",
"output_id": result_name,
"status": status,
"timestamp": datetime.utcnow(),
"ts": int(time.time()),
"response_time_ms": response_time_ms,
}
if error_msg:
log_doc["error"] = error_msg
if mongo_logs is not None:
try:
log.info("Inserting log to MongoDB - Database: %s, Collection: %s", mongo_logs.database.name, mongo_logs.name)
result = mongo_logs.insert_one(log_doc)
log.info("Mongo log inserted successfully: _id=%s, output_id=%s, status=%s, db=%s, collection=%s",
result.inserted_id, output_name, status, mongo_logs.database.name, mongo_logs.name)
# Verify the insert by reading it back
try:
verify_doc = mongo_logs.find_one({"_id": result.inserted_id})
if verify_doc:
log.info("Verified: Document exists in MongoDB after insert")
else:
log.error("WARNING: Document not found after insert! _id=%s", result.inserted_id)
except Exception as verify_err:
log.warning("Could not verify insert: %s", verify_err)
except Exception as mongo_err:
log.error("Mongo log insert failed: %s, log_doc=%s", mongo_err, log_doc, exc_info=True)
else:
log.warning("MongoDB not configured, skipping log insert")
@app.post("/remove-pink")
def remove_pink_segments(
image: UploadFile = File(...),
request: Request = None,
user_id: Optional[str] = Form(None),
category_id: Optional[str] = Form(None),
_: None = Depends(bearer_auth),
) -> Dict[str, str]:
"""
Simple endpoint: upload an image with pink/magenta segments to remove.
- Pink/Magenta segments → automatically removed (white in mask)
- Everything else → automatically kept (black in mask)
Just paint pink/magenta on areas you want to remove, upload the image, and it works!
"""
start_time = time.time()
status = "success"
error_msg = None
result_name = None
try:
log.info(f"Simple remove-pink: processing image {image.filename}")
# Load the image (with pink paint on it)
img = Image.open(image.file).convert("RGBA")
img_rgb = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2RGB)
# Auto-detect pink/magenta segments to remove
# Pink/Magenta → white in mask (remove)
# Everything else (natural image colors, including dark areas) → black in mask (keep)
# Detect pink/magenta using fixed RGB bounds per requested logic
lower = np.array([150, 0, 100], dtype=np.uint8)
upper = np.array([255, 120, 255], dtype=np.uint8)
binmask = (
(img_rgb[:, :, 0] >= lower[0]) & (img_rgb[:, :, 0] <= upper[0]) &
(img_rgb[:, :, 1] >= lower[1]) & (img_rgb[:, :, 1] <= upper[1]) &
(img_rgb[:, :, 2] >= lower[2]) & (img_rgb[:, :, 2] <= upper[2])
).astype(np.uint8) * 255
# Clean up the pink mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
binmask = cv2.morphologyEx(binmask, cv2.MORPH_CLOSE, kernel, iterations=2)
binmask = cv2.morphologyEx(binmask, cv2.MORPH_OPEN, kernel, iterations=1)
nonzero = int((binmask > 0).sum())
total_pixels = binmask.shape[0] * binmask.shape[1]
log.info(f"Detected {nonzero} pink pixels ({100*nonzero/total_pixels:.2f}% of image) to remove")
# Debug: log bounds used
log.info("Pink detection bounds used: lower=[150,0,100], upper=[255,120,255]")
if nonzero < 50:
log.error("No pink segments detected! Returning original image.")
result = np.array(img.convert("RGB"))
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
return {
"result": result_name,
"error": "No pink/magenta segments detected. Please paint areas to remove with magenta/pink color (RGB 255,0,255)."
}
# Create binary mask: Pink pixels → white (255), Everything else → black (0)
# Encode in RGBA format that process_inpaint expects
# process_inpaint does: mask = 255 - mask[:,:,3]
# So: alpha=0 (transparent/pink) → becomes 255 (white/remove)
# alpha=255 (opaque/keep) → becomes 0 (black/keep)
mask_rgba = np.zeros((binmask.shape[0], binmask.shape[1], 4), dtype=np.uint8)
# RGB channels don't matter for process_inpaint, but set them to white where pink for visualization
mask_rgba[:, :, 0] = binmask # R: white where pink
mask_rgba[:, :, 1] = binmask # G: white where pink
mask_rgba[:, :, 2] = binmask # B: white where pink
# Alpha: 0 (transparent) where pink → will become white after 255-alpha
# 255 (opaque) everywhere else → will become black after 255-alpha
mask_rgba[:, :, 3] = 255 - binmask # Invert: pink areas get alpha=0, rest get alpha=255
# Verify mask encoding
alpha_zero_count = int((mask_rgba[:,:,3] == 0).sum())
alpha_255_count = int((mask_rgba[:,:,3] == 255).sum())
total_pixels = binmask.shape[0] * binmask.shape[1]
log.info(f"Mask encoding: {alpha_zero_count} pixels with alpha=0 (pink), {alpha_255_count} pixels with alpha=255 (keep)")
log.info(f"After 255-alpha conversion: {alpha_zero_count} will become white (255/remove), {alpha_255_count} will become black (0/keep)")
# IMPORTANT: We need to use the ORIGINAL image WITHOUT pink paint for inpainting!
# Remove pink from the original image before processing
# Create a clean version: where pink was detected, keep original image colors
img_clean = np.array(img.convert("RGBA"))
# Where pink is detected, we want to inpaint, so we can leave it (or blend it out)
# Actually, the model will inpaint over those areas, so we can pass the original
# But for better results, we might want to remove the pink overlay first
# Process with invert_mask=True (default) because process_inpaint expects alpha=0 for removal
log.info(f"Starting inpainting process...")
result = process_inpaint(img_clean, mask_rgba, invert_mask=True)
log.info(f"Inpainting complete, result shape: {result.shape}")
result_name = f"output_{uuid.uuid4().hex}.png"
result_path = os.path.join(OUTPUT_DIR, result_name)
Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
url: Optional[str] = None
try:
if request is not None:
url = str(request.url_for("download_file", filename=result_name))
except Exception:
url = None
logs.append({
"result": result_name,
"filename": image.filename,
"pink_pixels": nonzero,
"timestamp": datetime.utcnow().isoformat()
})
resp: Dict[str, str] = {"result": result_name, "pink_segments_detected": str(nonzero)}
if url:
resp["url"] = url
log_media_click(user_id, category_id)
return resp
except Exception as e:
status = "fail"
error_msg = str(e)
raise
finally:
# Always log to regular MongoDB (mandatory)
end_time = time.time()
response_time_ms = (end_time - start_time) * 1000
log_doc = {
"endpoint": "remove-pink",
"output_id": result_name,
"status": status,
"timestamp": datetime.utcnow(),
"ts": int(time.time()),
"response_time_ms": response_time_ms,
}
if error_msg:
log_doc["error"] = error_msg
if mongo_logs is not None:
try:
log.info("Inserting log to MongoDB - Database: %s, Collection: %s", mongo_logs.database.name, mongo_logs.name)
result = mongo_logs.insert_one(log_doc)
log.info("Mongo log inserted successfully: _id=%s, output_id=%s, status=%s, db=%s, collection=%s",
result.inserted_id, output_name, status, mongo_logs.database.name, mongo_logs.name)
# Verify the insert by reading it back
try:
verify_doc = mongo_logs.find_one({"_id": result.inserted_id})
if verify_doc:
log.info("Verified: Document exists in MongoDB after insert")
else:
log.error("WARNING: Document not found after insert! _id=%s", result.inserted_id)
except Exception as verify_err:
log.warning("Could not verify insert: %s", verify_err)
except Exception as mongo_err:
log.error("Mongo log insert failed: %s, log_doc=%s", mongo_err, log_doc, exc_info=True)
else:
log.warning("MongoDB not configured, skipping log insert")
@app.get("/download/{filename}")
def download_file(filename: str):
path = os.path.join(OUTPUT_DIR, filename)
if not os.path.isfile(path):
raise HTTPException(status_code=404, detail="file not found")
return FileResponse(path)
@app.get("/result/{filename}")
def view_result(filename: str):
"""View result image directly in browser (same as download but with proper content-type for viewing)"""
path = os.path.join(OUTPUT_DIR, filename)
if not os.path.isfile(path):
raise HTTPException(status_code=404, detail="file not found")
return FileResponse(path, media_type="image/png")
@app.get("/logs")
def get_logs(_: None = Depends(bearer_auth)) -> JSONResponse:
return JSONResponse(content=logs)
# import os
# import uuid
# import shutil
# import re
# from datetime import datetime, timedelta, date
# from typing import Dict, List, Optional
# import numpy as np
# from fastapi import (
# FastAPI,
# UploadFile,
# File,
# HTTPException,
# Depends,
# Header,
# Request,
# Form,
# )
# from fastapi.responses import FileResponse, JSONResponse
# from pydantic import BaseModel
# from PIL import Image
# import cv2
# import logging
# from bson import ObjectId
# from pymongo import MongoClient
# import time
# logging.basicConfig(level=logging.INFO)
# log = logging.getLogger("api")
# from src.core import process_inpaint
# # Directories (use writable space on HF Spaces)
# BASE_DIR = os.environ.get("DATA_DIR", "/data")
# if not os.path.isdir(BASE_DIR):
# # Fallback to /tmp if /data not available
# BASE_DIR = "/tmp"
# UPLOAD_DIR = os.path.join(BASE_DIR, "uploads")
# OUTPUT_DIR = os.path.join(BASE_DIR, "outputs")
# os.makedirs(UPLOAD_DIR, exist_ok=True)
# os.makedirs(OUTPUT_DIR, exist_ok=True)
# # Optional Bearer token: set env API_TOKEN to require auth; if not set, endpoints are open
# ENV_TOKEN = os.environ.get("API_TOKEN")
# app = FastAPI(title="Photo Object Removal API", version="1.0.0")
# # In-memory stores
# file_store: Dict[str, Dict[str, str]] = {}
# logs: List[Dict[str, str]] = []
# MONGO_URI = "mongodb+srv://harilogicgo_db_user:pdnh6UCMsWvuTCoi@kiddoimages.k2a4nuv.mongodb.net/?appName=KiddoImages"
# mongo_client = MongoClient(MONGO_URI)
# mongo_db = mongo_client["object_remover"]
# mongo_logs = mongo_db["api_logs"]
# ADMIN_MONGO_URI = os.environ.get("MONGODB_ADMIN")
# DEFAULT_CATEGORY_ID = "69368f722e46bd68ae188984"
# admin_media_clicks = None
# def _init_admin_mongo() -> None:
# global admin_media_clicks
# if not ADMIN_MONGO_URI:
# log.info("Admin Mongo URI not provided; media click logging disabled")
# return
# try:
# admin_client = MongoClient(ADMIN_MONGO_URI)
# # get_default_database() extracts database from connection string (e.g., /adminPanel)
# admin_db = admin_client.get_default_database()
# if admin_db is None:
# # Fallback if no database in URI
# admin_db = admin_client["admin"]
# log.warning("No database in connection string, defaulting to 'admin'")
# admin_media_clicks = admin_db["media_clicks"]
# log.info(
# "Admin media click logging initialized: db=%s collection=%s",
# admin_db.name,
# admin_media_clicks.name,
# )
# try:
# admin_media_clicks.drop_index("user_id_1_header_1_media_id_1")
# log.info("Dropped legacy index user_id_1_header_1_media_id_1")
# except Exception as idx_err:
# # Index drop failure is non-critical (often permission issue)
# if "Unauthorized" not in str(idx_err):
# log.info("Skipping legacy index drop: %s", idx_err)
# except Exception as err:
# log.error("Failed to init admin Mongo client: %s", err)
# admin_media_clicks = None
# _init_admin_mongo()
# def _admin_logging_status() -> Dict[str, object]:
# if admin_media_clicks is None:
# return {
# "enabled": False,
# "db": None,
# "collection": None,
# }
# return {
# "enabled": True,
# "db": admin_media_clicks.database.name,
# "collection": admin_media_clicks.name,
# }
# def _build_ai_edit_daily_count(
# existing: Optional[List[Dict[str, object]]],
# today: date,
# ) -> List[Dict[str, object]]:
# """
# Build / extend the ai_edit_daily_count array with the following rules:
# - Case A (no existing data): return [{date: today, count: 1}]
# - Case B (today already recorded): return list unchanged
# - Case C (gap in days): fill missing days with count=0 and append today with count=1
# Additionally, the returned list is capped to the most recent 32 entries.
# The stored "date" value is a midnight UTC (naive UTC) datetime for the given day.
# """
# def _to_date_only(value: object) -> date:
# if isinstance(value, datetime):
# return value.date()
# if isinstance(value, date):
# return value
# # Fallback: try parsing ISO string "YYYY-MM-DD" or full datetime
# try:
# text = str(value)
# if len(text) == 10:
# return datetime.strptime(text, "%Y-%m-%d").date()
# return datetime.fromisoformat(text).date()
# except Exception:
# # If parsing fails, just treat as today to avoid crashing
# return today
# # Case A: first ever use (no array yet)
# if not existing:
# return [
# {
# "date": datetime(today.year, today.month, today.day),
# "count": 1,
# }
# ]
# # Work on a shallow copy so we don't mutate original in-place
# result: List[Dict[str, object]] = list(existing)
# last_entry = result[-1] if result else None
# if not last_entry or "date" not in last_entry:
# # If structure is unexpected, re-initialize safely
# return [
# {
# "date": datetime(today.year, today.month, today.day),
# "count": 1,
# }
# ]
# last_date = _to_date_only(last_entry["date"])
# # If somehow the last stored date is in the future, do nothing to avoid corrupting history
# if last_date > today:
# return result
# # Case B: today's date already present as the last entry → unchanged
# if last_date == today:
# return result
# # Case C: there is a gap, fill missing days with count=0 and append today with count=1
# cursor = last_date + timedelta(days=1)
# while cursor < today:
# result.append(
# {
# "date": datetime(cursor.year, cursor.month, cursor.day),
# "count": 0,
# }
# )
# cursor += timedelta(days=1)
# # Finally add today's presence indicator
# result.append(
# {
# "date": datetime(today.year, today.month, today.day),
# "count": 1,
# }
# )
# # Sort by date ascending (older dates first) to guarantee stable ordering:
# # [oldest, ..., newest]
# try:
# result.sort(key=lambda entry: _to_date_only(entry.get("date")))
# except Exception:
# # If anything goes wrong during sort, fall back to current ordering
# pass
# # Enforce 32-entry limit (keep the most recent 32 days)
# if len(result) > 32:
# result = result[-32:]
# return result
# def bearer_auth(authorization: Optional[str] = Header(default=None)) -> None:
# if not ENV_TOKEN:
# return
# if authorization is None or not authorization.lower().startswith("bearer "):
# raise HTTPException(status_code=401, detail="Unauthorized")
# token = authorization.split(" ", 1)[1]
# if token != ENV_TOKEN:
# raise HTTPException(status_code=403, detail="Forbidden")
# class InpaintRequest(BaseModel):
# image_id: str
# mask_id: str
# invert_mask: bool = True # True => selected/painted area is removed
# passthrough: bool = False # If True, return the original image unchanged
# user_id: Optional[str] = None
# category_id: Optional[str] = None
# class SimpleRemoveRequest(BaseModel):
# image_id: str # Image with pink/magenta segments to remove
# def _coerce_object_id(value: Optional[str]) -> ObjectId:
# if value is None:
# return ObjectId()
# value_str = str(value).strip()
# if re.fullmatch(r"[0-9a-fA-F]{24}", value_str):
# return ObjectId(value_str)
# if value_str.isdigit():
# hex_str = format(int(value_str), "x")
# if len(hex_str) > 24:
# hex_str = hex_str[-24:]
# hex_str = hex_str.rjust(24, "0")
# return ObjectId(hex_str)
# return ObjectId()
# def _coerce_category_id(category_id: Optional[str]) -> ObjectId:
# raw = category_id or DEFAULT_CATEGORY_ID
# raw_str = str(raw).strip()
# if re.fullmatch(r"[0-9a-fA-F]{24}", raw_str):
# return ObjectId(raw_str)
# return _coerce_object_id(raw_str)
# def log_media_click(user_id: Optional[str], category_id: Optional[str]) -> None:
# """Log to admin media_clicks collection only if user_id is provided."""
# if admin_media_clicks is None:
# return
# # Only log if user_id is provided (not None/empty)
# if not user_id or not user_id.strip():
# return
# try:
# user_obj = _coerce_object_id(user_id)
# category_obj = _coerce_category_id(category_id)
# now = datetime.utcnow()
# today = now.date()
# doc = admin_media_clicks.find_one({"userId": user_obj})
# if doc:
# existing_daily = doc.get("ai_edit_daily_count")
# updated_daily = _build_ai_edit_daily_count(existing_daily, today)
# categories = doc.get("categories") or []
# if any(cat.get("categoryId") == category_obj for cat in categories):
# # Category exists: increment click_count and ai_edit_complete, update dates
# admin_media_clicks.update_one(
# {"_id": doc["_id"], "categories.categoryId": category_obj},
# {
# "$inc": {
# "categories.$.click_count": 1,
# "ai_edit_complete": 1, # $inc handles missing fields (backward compatible)
# },
# "$set": {
# "categories.$.lastClickedAt": now,
# "updatedAt": now,
# "ai_edit_last_date": now,
# "ai_edit_daily_count": updated_daily,
# },
# },
# )
# else:
# # New category to existing document: push category, increment ai_edit_complete
# admin_media_clicks.update_one(
# {"_id": doc["_id"]},
# {
# "$push": {
# "categories": {
# "categoryId": category_obj,
# "click_count": 1,
# "lastClickedAt": now,
# }
# },
# "$inc": {"ai_edit_complete": 1}, # $inc handles missing fields
# "$set": {
# "updatedAt": now,
# "ai_edit_last_date": now,
# "ai_edit_daily_count": updated_daily,
# },
# },
# )
# else:
# # New user: create document with default ai_edit_complete=0, then increment to 1
# daily_for_new = _build_ai_edit_daily_count(None, today)
# admin_media_clicks.update_one(
# {"userId": user_obj},
# {
# "$setOnInsert": {
# "userId": user_obj,
# "categories": [
# {
# "categoryId": category_obj,
# "click_count": 1,
# "lastClickedAt": now,
# }
# ],
# "createdAt": now,
# "updatedAt": now,
# "ai_edit_daily_count": daily_for_new,
# },
# "$inc": {"ai_edit_complete": 1}, # Increment to 1 on first use
# "$set": {
# "updatedAt": now,
# "ai_edit_last_date": now,
# },
# },
# upsert=True,
# )
# except Exception as err:
# err_str = str(err)
# if "Unauthorized" in err_str or "not authorized" in err_str.lower():
# log.warning(
# "Admin media click logging failed (permissions): user lacks read/write on db=%s collection=%s. "
# "Check MongoDB user permissions.",
# admin_media_clicks.database.name,
# admin_media_clicks.name,
# )
# else:
# log.warning("Admin media click logging failed: %s", err)
# @app.get("/")
# def root() -> Dict[str, object]:
# return {
# "name": "Photo Object Removal API",
# "status": "ok",
# "endpoints": {
# "GET /health": "health check",
# "POST /upload-image": "form-data: image=file",
# "POST /upload-mask": "form-data: mask=file",
# "POST /inpaint": "JSON: {image_id, mask_id}",
# "POST /inpaint-multipart": "form-data: image=file, mask=file",
# "POST /remove-pink": "form-data: image=file (auto-detects pink segments and removes them)",
# "GET /download/{filename}": "download result image",
# "GET /result/{filename}": "view result image in browser",
# "GET /logs": "recent uploads/results",
# },
# "auth": "set API_TOKEN env var to require Authorization: Bearer <token> (except /health)",
# }
# @app.get("/health")
# def health() -> Dict[str, str]:
# return {"status": "healthy"}
# @app.get("/logging-status")
# def logging_status(_: None = Depends(bearer_auth)) -> Dict[str, object]:
# """Helper endpoint to verify admin media logging wiring (no secrets exposed)."""
# return _admin_logging_status()
# @app.post("/upload-image")
# def upload_image(image: UploadFile = File(...), _: None = Depends(bearer_auth)) -> Dict[str, str]:
# ext = os.path.splitext(image.filename)[1] or ".png"
# file_id = str(uuid.uuid4())
# stored_name = f"{file_id}{ext}"
# stored_path = os.path.join(UPLOAD_DIR, stored_name)
# with open(stored_path, "wb") as f:
# shutil.copyfileobj(image.file, f)
# file_store[file_id] = {
# "type": "image",
# "filename": image.filename,
# "stored_name": stored_name,
# "path": stored_path,
# "timestamp": datetime.utcnow().isoformat(),
# }
# logs.append({"id": file_id, "filename": image.filename, "type": "image", "timestamp": datetime.utcnow().isoformat()})
# return {"id": file_id, "filename": image.filename}
# @app.post("/upload-mask")
# def upload_mask(mask: UploadFile = File(...), _: None = Depends(bearer_auth)) -> Dict[str, str]:
# ext = os.path.splitext(mask.filename)[1] or ".png"
# file_id = str(uuid.uuid4())
# stored_name = f"{file_id}{ext}"
# stored_path = os.path.join(UPLOAD_DIR, stored_name)
# with open(stored_path, "wb") as f:
# shutil.copyfileobj(mask.file, f)
# file_store[file_id] = {
# "type": "mask",
# "filename": mask.filename,
# "stored_name": stored_name,
# "path": stored_path,
# "timestamp": datetime.utcnow().isoformat(),
# }
# logs.append({"id": file_id, "filename": mask.filename, "type": "mask", "timestamp": datetime.utcnow().isoformat()})
# return {"id": file_id, "filename": mask.filename}
# def _load_rgba_image(path: str) -> Image.Image:
# img = Image.open(path)
# return img.convert("RGBA")
# def _load_rgba_mask_from_image(img: Image.Image) -> np.ndarray:
# """
# Convert mask image to RGBA format (black/white mask).
# Standard convention: white (255) = area to remove, black (0) = area to keep
# Returns RGBA with white in RGB channels where removal is needed, alpha=255
# """
# if img.mode != "RGBA":
# # For RGB/Grayscale masks: white (value>128) = remove, black (value<=128) = keep
# gray = img.convert("L")
# arr = np.array(gray)
# # Create proper black/white mask: white pixels (>128) = remove, black (<=128) = keep
# mask_bw = np.where(arr > 128, 255, 0).astype(np.uint8)
# rgba = np.zeros((img.height, img.width, 4), dtype=np.uint8)
# rgba[:, :, 0] = mask_bw # R
# rgba[:, :, 1] = mask_bw # G
# rgba[:, :, 2] = mask_bw # B
# rgba[:, :, 3] = 255 # Fully opaque
# log.info(f"Loaded {img.mode} mask: {int((mask_bw > 0).sum())} white pixels (to remove)")
# return rgba
# # For RGBA: check if alpha channel is meaningful
# arr = np.array(img)
# alpha = arr[:, :, 3]
# rgb = arr[:, :, :3]
# # If alpha is mostly opaque everywhere (mean > 200), treat RGB channels as mask values
# if alpha.mean() > 200:
# # Use RGB to determine mask: white/bright in RGB = remove
# gray = cv2.cvtColor(rgb, cv2.COLOR_RGB2GRAY)
# # Also detect magenta specifically
# magenta = np.all(rgb == [255, 0, 255], axis=2).astype(np.uint8) * 255
# mask_bw = np.maximum(np.where(gray > 128, 255, 0).astype(np.uint8), magenta)
# rgba = arr.copy()
# rgba[:, :, 0] = mask_bw # R
# rgba[:, :, 1] = mask_bw # G
# rgba[:, :, 2] = mask_bw # B
# rgba[:, :, 3] = 255 # Fully opaque
# log.info(f"Loaded RGBA mask (RGB-based): {int((mask_bw > 0).sum())} white pixels (to remove)")
# return rgba
# # Alpha channel encodes the mask - convert to RGB-based
# # Transparent areas (alpha < 128) = remove, Opaque areas = keep
# mask_bw = np.where(alpha < 128, 255, 0).astype(np.uint8)
# rgba = arr.copy()
# rgba[:, :, 0] = mask_bw
# rgba[:, :, 1] = mask_bw
# rgba[:, :, 2] = mask_bw
# rgba[:, :, 3] = 255
# log.info(f"Loaded RGBA mask (alpha-based): {int((mask_bw > 0).sum())} white pixels (to remove)")
# return rgba
# @app.post("/inpaint")
# def inpaint(req: InpaintRequest, _: None = Depends(bearer_auth)) -> Dict[str, str]:
# start_time = time.time()
# status = "success"
# error_msg = None
# output_name = None
# try:
# if req.image_id not in file_store or file_store[req.image_id]["type"] != "image":
# raise HTTPException(status_code=404, detail="image_id not found")
# if req.mask_id not in file_store or file_store[req.mask_id]["type"] != "mask":
# raise HTTPException(status_code=404, detail="mask_id not found")
# img_rgba = _load_rgba_image(file_store[req.image_id]["path"])
# mask_img = Image.open(file_store[req.mask_id]["path"])
# mask_rgba = _load_rgba_mask_from_image(mask_img)
# if req.passthrough:
# result = np.array(img_rgba.convert("RGB"))
# else:
# result = process_inpaint(
# np.array(img_rgba),
# mask_rgba,
# invert_mask=req.invert_mask
# )
# output_name = f"output_{uuid.uuid4().hex}.png"
# output_path = os.path.join(OUTPUT_DIR, output_name)
# Image.fromarray(result).save(
# output_path, "PNG", optimize=False, compress_level=1
# )
# log_media_click(req.user_id, req.category_id)
# return {"result": output_name}
# except Exception as e:
# status = "fail"
# error_msg = str(e)
# raise
# finally:
# end_time = time.time()
# response_time_ms = (end_time - start_time) * 1000
# log_doc = {
# "input_image_id": req.image_id,
# "input_mask_id": req.mask_id,
# "output_id": output_name,
# "status": status,
# "timestamp": datetime.utcnow(),
# "ts": int(time.time()),
# "response_time_ms": response_time_ms
# }
# if error_msg:
# log_doc["error"] = error_msg
# try:
# mongo_logs.insert_one(log_doc)
# except Exception as mongo_err:
# log.error(f"Mongo log insert failed: {mongo_err}")
# # @app.post("/inpaint")
# # def inpaint(req: InpaintRequest, _: None = Depends(bearer_auth)) -> Dict[str, str]:
# # if req.image_id not in file_store or file_store[req.image_id]["type"] != "image":
# # raise HTTPException(status_code=404, detail="image_id not found")
# # if req.mask_id not in file_store or file_store[req.mask_id]["type"] != "mask":
# # raise HTTPException(status_code=404, detail="mask_id not found")
# # img_rgba = _load_rgba_image(file_store[req.image_id]["path"])
# # mask_img = Image.open(file_store[req.mask_id]["path"]) # may be RGB/gray/RGBA
# # mask_rgba = _load_rgba_mask_from_image(mask_img)
# # # Debug: check mask before processing
# # white_pixels = int((mask_rgba[:,:,0] > 128).sum())
# # log.info(f"Inpaint request: mask has {white_pixels} white pixels, invert_mask={req.invert_mask}")
# # if req.passthrough:
# # result = np.array(img_rgba.convert("RGB"))
# # else:
# # result = process_inpaint(np.array(img_rgba), mask_rgba, invert_mask=req.invert_mask)
# # result_name = f"output_{uuid.uuid4().hex}.png"
# # result_path = os.path.join(OUTPUT_DIR, result_name)
# # Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# # logs.append({"result": result_name, "timestamp": datetime.utcnow().isoformat()})
# # return {"result": result_name}
# @app.post("/inpaint-url")
# def inpaint_url(req: InpaintRequest, request: Request, _: None = Depends(bearer_auth)) -> Dict[str, str]:
# """Same as /inpaint but returns a JSON with a public download URL instead of image bytes."""
# start_time = time.time()
# status = "success"
# error_msg = None
# result_name = None
# try:
# if req.image_id not in file_store or file_store[req.image_id]["type"] != "image":
# raise HTTPException(status_code=404, detail="image_id not found")
# if req.mask_id not in file_store or file_store[req.mask_id]["type"] != "mask":
# raise HTTPException(status_code=404, detail="mask_id not found")
# img_rgba = _load_rgba_image(file_store[req.image_id]["path"])
# mask_img = Image.open(file_store[req.mask_id]["path"]) # may be RGB/gray/RGBA
# mask_rgba = _load_rgba_mask_from_image(mask_img)
# if req.passthrough:
# result = np.array(img_rgba.convert("RGB"))
# else:
# result = process_inpaint(np.array(img_rgba), mask_rgba, invert_mask=req.invert_mask)
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# url = str(request.url_for("download_file", filename=result_name))
# logs.append({"result": result_name, "url": url, "timestamp": datetime.utcnow().isoformat()})
# log_media_click(req.user_id, req.category_id)
# return {"result": result_name, "url": url}
# except Exception as e:
# status = "fail"
# error_msg = str(e)
# raise
# finally:
# # Always log to regular MongoDB (mandatory)
# end_time = time.time()
# response_time_ms = (end_time - start_time) * 1000
# log_doc = {
# "input_image_id": req.image_id,
# "input_mask_id": req.mask_id,
# "output_id": result_name,
# "status": status,
# "timestamp": datetime.utcnow(),
# "ts": int(time.time()),
# "response_time_ms": response_time_ms,
# }
# if error_msg:
# log_doc["error"] = error_msg
# try:
# mongo_logs.insert_one(log_doc)
# except Exception as mongo_err:
# log.error("Mongo log insert failed: %s", mongo_err)
# @app.post("/inpaint-multipart")
# def inpaint_multipart(
# image: UploadFile = File(...),
# mask: UploadFile = File(...),
# request: Request = None,
# invert_mask: bool = True,
# mask_is_painted: bool = False, # if True, mask file is the painted-on image (e.g., black strokes on original)
# passthrough: bool = False,
# user_id: Optional[str] = Form(None),
# category_id: Optional[str] = Form(None),
# _: None = Depends(bearer_auth),
# ) -> Dict[str, str]:
# start_time = time.time()
# status = "success"
# error_msg = None
# result_name = None
# try:
# # Load in-memory
# img = Image.open(image.file).convert("RGBA")
# m = Image.open(mask.file).convert("RGBA")
# if passthrough:
# # Just echo the input image, ignore mask
# result = np.array(img.convert("RGB"))
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# url: Optional[str] = None
# try:
# if request is not None:
# url = str(request.url_for("download_file", filename=result_name))
# except Exception:
# url = None
# entry: Dict[str, str] = {"result": result_name, "timestamp": datetime.utcnow().isoformat()}
# if url:
# entry["url"] = url
# logs.append(entry)
# resp: Dict[str, str] = {"result": result_name}
# if url:
# resp["url"] = url
# log_media_click(user_id, category_id)
# return resp
# if mask_is_painted:
# # Auto-detect pink/magenta paint and convert to black/white mask
# # White pixels = areas to remove, Black pixels = areas to keep
# log.info("Auto-detecting pink/magenta paint from uploaded image...")
# m_rgb = cv2.cvtColor(np.array(m), cv2.COLOR_RGBA2RGB)
# # Detect pink/magenta using fixed RGB bounds (same as /remove-pink)
# lower = np.array([150, 0, 100], dtype=np.uint8)
# upper = np.array([255, 120, 255], dtype=np.uint8)
# magenta_detected = (
# (m_rgb[:, :, 0] >= lower[0]) & (m_rgb[:, :, 0] <= upper[0]) &
# (m_rgb[:, :, 1] >= lower[1]) & (m_rgb[:, :, 1] <= upper[1]) &
# (m_rgb[:, :, 2] >= lower[2]) & (m_rgb[:, :, 2] <= upper[2])
# ).astype(np.uint8) * 255
# # Method 2: Also check if original image was provided to find differences
# if img is not None:
# img_rgb = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2RGB)
# if img_rgb.shape == m_rgb.shape:
# diff = cv2.absdiff(img_rgb, m_rgb)
# gray_diff = cv2.cvtColor(diff, cv2.COLOR_RGB2GRAY)
# # Any significant difference (>50) could be paint
# diff_mask = (gray_diff > 50).astype(np.uint8) * 255
# # Combine with magenta detection
# binmask = cv2.bitwise_or(magenta_detected, diff_mask)
# else:
# binmask = magenta_detected
# else:
# # No original image provided, use magenta detection only
# binmask = magenta_detected
# # Clean up the mask: remove noise and fill small holes
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
# # Close small gaps in the mask
# binmask = cv2.morphologyEx(binmask, cv2.MORPH_CLOSE, kernel, iterations=2)
# # Remove small noise
# binmask = cv2.morphologyEx(binmask, cv2.MORPH_OPEN, kernel, iterations=1)
# nonzero = int((binmask > 0).sum())
# log.info("Pink/magenta paint detected: %d pixels marked for removal (white)", nonzero)
# # If very few pixels detected, assume the user may already be providing a BW mask
# # and proceed without forcing strict detection
# if nonzero < 50:
# log.error("CRITICAL: Could not detect pink/magenta paint! Returning original image.")
# result = np.array(img.convert("RGB")) if img else np.array(m.convert("RGB"))
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# return {"result": result_name, "error": "pink/magenta paint detection failed - very few pixels detected"}
# # Create binary mask: Pink pixels → white (255), Everything else → black (0)
# # Encode in RGBA format for process_inpaint
# # process_inpaint does: mask = 255 - mask[:,:,3]
# # So: alpha=0 (transparent/pink) → becomes 255 (white/remove)
# # alpha=255 (opaque/keep) → becomes 0 (black/keep)
# mask_rgba = np.zeros((binmask.shape[0], binmask.shape[1], 4), dtype=np.uint8)
# mask_rgba[:, :, 0] = binmask # R: white where pink (for visualization)
# mask_rgba[:, :, 1] = binmask # G: white where pink
# mask_rgba[:, :, 2] = binmask # B: white where pink
# # Alpha: invert so pink areas get alpha=0 → will become white after 255-alpha
# mask_rgba[:, :, 3] = 255 - binmask
# log.info("Successfully created binary mask: %d pink pixels → white (255), %d pixels → black (0)",
# nonzero, binmask.shape[0] * binmask.shape[1] - nonzero)
# else:
# mask_rgba = _load_rgba_mask_from_image(m)
# # When mask_is_painted=true, we encode pink as alpha=0, so process_inpaint's default invert_mask=True works correctly
# actual_invert = invert_mask # Use default True for painted masks
# log.info("Using invert_mask=%s (mask_is_painted=%s)", actual_invert, mask_is_painted)
# result = process_inpaint(np.array(img), mask_rgba, invert_mask=actual_invert)
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# url: Optional[str] = None
# try:
# if request is not None:
# url = str(request.url_for("download_file", filename=result_name))
# except Exception:
# url = None
# entry: Dict[str, str] = {"result": result_name, "timestamp": datetime.utcnow().isoformat()}
# if url:
# entry["url"] = url
# logs.append(entry)
# resp: Dict[str, str] = {"result": result_name}
# if url:
# resp["url"] = url
# log_media_click(user_id, category_id)
# return resp
# except Exception as e:
# status = "fail"
# error_msg = str(e)
# raise
# finally:
# # Always log to regular MongoDB (mandatory)
# end_time = time.time()
# response_time_ms = (end_time - start_time) * 1000
# log_doc = {
# "endpoint": "inpaint-multipart",
# "output_id": result_name,
# "status": status,
# "timestamp": datetime.utcnow(),
# "ts": int(time.time()),
# "response_time_ms": response_time_ms,
# }
# if error_msg:
# log_doc["error"] = error_msg
# try:
# mongo_logs.insert_one(log_doc)
# except Exception as mongo_err:
# log.error("Mongo log insert failed: %s", mongo_err)
# @app.post("/remove-pink")
# def remove_pink_segments(
# image: UploadFile = File(...),
# request: Request = None,
# user_id: Optional[str] = Form(None),
# category_id: Optional[str] = Form(None),
# _: None = Depends(bearer_auth),
# ) -> Dict[str, str]:
# """
# Simple endpoint: upload an image with pink/magenta segments to remove.
# - Pink/Magenta segments → automatically removed (white in mask)
# - Everything else → automatically kept (black in mask)
# Just paint pink/magenta on areas you want to remove, upload the image, and it works!
# """
# start_time = time.time()
# status = "success"
# error_msg = None
# result_name = None
# try:
# log.info(f"Simple remove-pink: processing image {image.filename}")
# # Load the image (with pink paint on it)
# img = Image.open(image.file).convert("RGBA")
# img_rgb = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2RGB)
# # Auto-detect pink/magenta segments to remove
# # Pink/Magenta → white in mask (remove)
# # Everything else (natural image colors, including dark areas) → black in mask (keep)
# # Detect pink/magenta using fixed RGB bounds per requested logic
# lower = np.array([150, 0, 100], dtype=np.uint8)
# upper = np.array([255, 120, 255], dtype=np.uint8)
# binmask = (
# (img_rgb[:, :, 0] >= lower[0]) & (img_rgb[:, :, 0] <= upper[0]) &
# (img_rgb[:, :, 1] >= lower[1]) & (img_rgb[:, :, 1] <= upper[1]) &
# (img_rgb[:, :, 2] >= lower[2]) & (img_rgb[:, :, 2] <= upper[2])
# ).astype(np.uint8) * 255
# # Clean up the pink mask
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
# binmask = cv2.morphologyEx(binmask, cv2.MORPH_CLOSE, kernel, iterations=2)
# binmask = cv2.morphologyEx(binmask, cv2.MORPH_OPEN, kernel, iterations=1)
# nonzero = int((binmask > 0).sum())
# total_pixels = binmask.shape[0] * binmask.shape[1]
# log.info(f"Detected {nonzero} pink pixels ({100*nonzero/total_pixels:.2f}% of image) to remove")
# # Debug: log bounds used
# log.info("Pink detection bounds used: lower=[150,0,100], upper=[255,120,255]")
# if nonzero < 50:
# log.error("No pink segments detected! Returning original image.")
# result = np.array(img.convert("RGB"))
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# return {
# "result": result_name,
# "error": "No pink/magenta segments detected. Please paint areas to remove with magenta/pink color (RGB 255,0,255)."
# }
# # Create binary mask: Pink pixels → white (255), Everything else → black (0)
# # Encode in RGBA format that process_inpaint expects
# # process_inpaint does: mask = 255 - mask[:,:,3]
# # So: alpha=0 (transparent/pink) → becomes 255 (white/remove)
# # alpha=255 (opaque/keep) → becomes 0 (black/keep)
# mask_rgba = np.zeros((binmask.shape[0], binmask.shape[1], 4), dtype=np.uint8)
# # RGB channels don't matter for process_inpaint, but set them to white where pink for visualization
# mask_rgba[:, :, 0] = binmask # R: white where pink
# mask_rgba[:, :, 1] = binmask # G: white where pink
# mask_rgba[:, :, 2] = binmask # B: white where pink
# # Alpha: 0 (transparent) where pink → will become white after 255-alpha
# # 255 (opaque) everywhere else → will become black after 255-alpha
# mask_rgba[:, :, 3] = 255 - binmask # Invert: pink areas get alpha=0, rest get alpha=255
# # Verify mask encoding
# alpha_zero_count = int((mask_rgba[:,:,3] == 0).sum())
# alpha_255_count = int((mask_rgba[:,:,3] == 255).sum())
# total_pixels = binmask.shape[0] * binmask.shape[1]
# log.info(f"Mask encoding: {alpha_zero_count} pixels with alpha=0 (pink), {alpha_255_count} pixels with alpha=255 (keep)")
# log.info(f"After 255-alpha conversion: {alpha_zero_count} will become white (255/remove), {alpha_255_count} will become black (0/keep)")
# # IMPORTANT: We need to use the ORIGINAL image WITHOUT pink paint for inpainting!
# # Remove pink from the original image before processing
# # Create a clean version: where pink was detected, keep original image colors
# img_clean = np.array(img.convert("RGBA"))
# # Where pink is detected, we want to inpaint, so we can leave it (or blend it out)
# # Actually, the model will inpaint over those areas, so we can pass the original
# # But for better results, we might want to remove the pink overlay first
# # Process with invert_mask=True (default) because process_inpaint expects alpha=0 for removal
# log.info(f"Starting inpainting process...")
# result = process_inpaint(img_clean, mask_rgba, invert_mask=True)
# log.info(f"Inpainting complete, result shape: {result.shape}")
# result_name = f"output_{uuid.uuid4().hex}.png"
# result_path = os.path.join(OUTPUT_DIR, result_name)
# Image.fromarray(result).save(result_path, "PNG", optimize=False, compress_level=1)
# url: Optional[str] = None
# try:
# if request is not None:
# url = str(request.url_for("download_file", filename=result_name))
# except Exception:
# url = None
# logs.append({
# "result": result_name,
# "filename": image.filename,
# "pink_pixels": nonzero,
# "timestamp": datetime.utcnow().isoformat()
# })
# resp: Dict[str, str] = {"result": result_name, "pink_segments_detected": str(nonzero)}
# if url:
# resp["url"] = url
# log_media_click(user_id, category_id)
# return resp
# except Exception as e:
# status = "fail"
# error_msg = str(e)
# raise
# finally:
# # Always log to regular MongoDB (mandatory)
# end_time = time.time()
# response_time_ms = (end_time - start_time) * 1000
# log_doc = {
# "endpoint": "remove-pink",
# "output_id": result_name,
# "status": status,
# "timestamp": datetime.utcnow(),
# "ts": int(time.time()),
# "response_time_ms": response_time_ms,
# }
# if error_msg:
# log_doc["error"] = error_msg
# try:
# mongo_logs.insert_one(log_doc)
# except Exception as mongo_err:
# log.error("Mongo log insert failed: %s", mongo_err)
# @app.get("/download/{filename}")
# def download_file(filename: str):
# path = os.path.join(OUTPUT_DIR, filename)
# if not os.path.isfile(path):
# raise HTTPException(status_code=404, detail="file not found")
# return FileResponse(path)
# @app.get("/result/{filename}")
# def view_result(filename: str):
# """View result image directly in browser (same as download but with proper content-type for viewing)"""
# path = os.path.join(OUTPUT_DIR, filename)
# if not os.path.isfile(path):
# raise HTTPException(status_code=404, detail="file not found")
# return FileResponse(path, media_type="image/png")
# @app.get("/logs")
# def get_logs(_: None = Depends(bearer_auth)) -> JSONResponse:
# return JSONResponse(content=logs)