import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM MODEL_ID = "Lucid-research/lucentcode-1-py" # Change this to your model repo ID tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained(MODEL_ID) def format_prompt(user_input): return f"### Instruction:\n{user_input}\n\n### Output:\n" def generate_code(user_input): prompt = format_prompt(user_input) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_length=1000, temperature=0.7, do_sample=True, top_p=0.9, pad_token_id=tokenizer.eos_token_id, ) text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Return only the generated part after "### Output:" return text.split("### Output:")[-1].strip() iface = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=4, label="Instruction"), outputs=gr.Textbox(lines=8, label="Generated Output"), title="Python Generation With LucentCode-1-py", description="Enter an instruction and get a generated Python function.", ) if __name__ == "__main__": iface.launch()