added the folder
Browse files
0219_gradio/README.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PhySH Taxonomy Classifier — Gradio App
|
| 2 |
+
|
| 3 |
+
Interactive web app that predicts APS PhySH **disciplines** and **research-area concepts**
|
| 4 |
+
for a given paper title + abstract.
|
| 5 |
+
|
| 6 |
+
## How it works
|
| 7 |
+
|
| 8 |
+
1. Text is embedded with `google/embeddinggemma-300m` (768-dim, L2-normalised).
|
| 9 |
+
2. **Stage 1** — A multi-label MLP predicts discipline probabilities (18 classes).
|
| 10 |
+
3. **Stage 2** — A discipline-conditioned MLP concatenates the embedding with discipline
|
| 11 |
+
probabilities and predicts research-area concepts (186 classes).
|
| 12 |
+
|
| 13 |
+
Both models are `.pt` checkpoints trained in `../0120_taxonomy_training_inference/`.
|
| 14 |
+
|
| 15 |
+
## Setup
|
| 16 |
+
|
| 17 |
+
The app uses the project-level virtualenv (`.venv` at the repo root).
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
# From the repo root
|
| 21 |
+
source .venv/bin/activate
|
| 22 |
+
|
| 23 |
+
# Install the one extra dependency
|
| 24 |
+
pip install gradio
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Run
|
| 28 |
+
|
| 29 |
+
```bash
|
| 30 |
+
cd 0219_gradio
|
| 31 |
+
python app.py
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
Then open `http://127.0.0.1:7860` in your browser.
|
| 35 |
+
|
| 36 |
+
## Model files
|
| 37 |
+
|
| 38 |
+
The app expects these checkpoints in the same directory as `app.py`:
|
| 39 |
+
|
| 40 |
+
- `discipline_classifier_gemma_20260130_140842.pt`
|
| 41 |
+
- `concept_conditioned_gemma_20260130_140842.pt`
|
0219_gradio/__pycache__/app.cpython-313.pyc
ADDED
|
Binary file (13.9 kB). View file
|
|
|
0219_gradio/app.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PhySH Taxonomy Classifier — Gradio App
|
| 3 |
+
|
| 4 |
+
Two-stage hierarchical cascade:
|
| 5 |
+
Stage 1 → Discipline prediction (18-class multi-label)
|
| 6 |
+
Stage 2 → Concept prediction (186-class multi-label, conditioned on discipline probs)
|
| 7 |
+
|
| 8 |
+
Models were trained on APS PhySH labels with google/embeddinggemma-300m embeddings.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import re
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from typing import Dict, List, Tuple
|
| 14 |
+
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from sentence_transformers import SentenceTransformer
|
| 20 |
+
|
| 21 |
+
# ---------------------------------------------------------------------------
|
| 22 |
+
# Model definitions (mirror the training code exactly)
|
| 23 |
+
# ---------------------------------------------------------------------------
|
| 24 |
+
|
| 25 |
+
class MultiLabelMLP(nn.Module):
|
| 26 |
+
def __init__(self, input_dim: int, output_dim: int,
|
| 27 |
+
hidden_layers: Tuple[int, ...] = (1024, 512), dropout: float = 0.3):
|
| 28 |
+
super().__init__()
|
| 29 |
+
layers = []
|
| 30 |
+
prev_dim = input_dim
|
| 31 |
+
for hidden_dim in hidden_layers:
|
| 32 |
+
layers.extend([nn.Linear(prev_dim, hidden_dim), nn.ReLU(), nn.Dropout(dropout)])
|
| 33 |
+
prev_dim = hidden_dim
|
| 34 |
+
layers.append(nn.Linear(prev_dim, output_dim))
|
| 35 |
+
self.network = nn.Sequential(*layers)
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
return self.network(x)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class DisciplineConditionedMLP(nn.Module):
|
| 42 |
+
def __init__(self, embedding_dim: int, discipline_dim: int, output_dim: int,
|
| 43 |
+
hidden_layers: Tuple[int, ...] = (1024, 512), dropout: float = 0.3,
|
| 44 |
+
discipline_dropout: float = 0.0, use_logits: bool = False):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.use_logits = use_logits
|
| 47 |
+
self.discipline_dropout = nn.Dropout(discipline_dropout)
|
| 48 |
+
layers = []
|
| 49 |
+
prev_dim = embedding_dim + discipline_dim
|
| 50 |
+
for hidden_dim in hidden_layers:
|
| 51 |
+
layers.extend([nn.Linear(prev_dim, hidden_dim), nn.ReLU(), nn.Dropout(dropout)])
|
| 52 |
+
prev_dim = hidden_dim
|
| 53 |
+
layers.append(nn.Linear(prev_dim, output_dim))
|
| 54 |
+
self.network = nn.Sequential(*layers)
|
| 55 |
+
|
| 56 |
+
def forward(self, embedding: torch.Tensor, discipline_probs: torch.Tensor) -> torch.Tensor:
|
| 57 |
+
if self.use_logits:
|
| 58 |
+
disc_features = torch.clamp(discipline_probs, 1e-7, 1 - 1e-7)
|
| 59 |
+
disc_features = torch.log(disc_features / (1 - disc_features))
|
| 60 |
+
else:
|
| 61 |
+
disc_features = discipline_probs
|
| 62 |
+
disc_features = self.discipline_dropout(disc_features)
|
| 63 |
+
return self.network(torch.cat([embedding, disc_features], dim=1))
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# ---------------------------------------------------------------------------
|
| 67 |
+
# Paths
|
| 68 |
+
# ---------------------------------------------------------------------------
|
| 69 |
+
MODELS_DIR = Path(__file__).resolve().parent
|
| 70 |
+
DISCIPLINE_MODEL_PATH = MODELS_DIR / "discipline_classifier_gemma_20260130_140842.pt"
|
| 71 |
+
CONCEPT_MODEL_PATH = MODELS_DIR / "concept_conditioned_gemma_20260130_140842.pt"
|
| 72 |
+
EMBEDDING_MODEL_NAME = "google/embeddinggemma-300m"
|
| 73 |
+
|
| 74 |
+
# ---------------------------------------------------------------------------
|
| 75 |
+
# Globals (loaded once at startup)
|
| 76 |
+
# ---------------------------------------------------------------------------
|
| 77 |
+
device: str = "cpu"
|
| 78 |
+
embedding_model: SentenceTransformer = None
|
| 79 |
+
discipline_model: MultiLabelMLP = None
|
| 80 |
+
concept_model: DisciplineConditionedMLP = None
|
| 81 |
+
discipline_labels: List[Dict] = []
|
| 82 |
+
concept_labels: List[Dict] = []
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def load_models():
|
| 86 |
+
global device, embedding_model, discipline_model, concept_model
|
| 87 |
+
global discipline_labels, concept_labels
|
| 88 |
+
|
| 89 |
+
if torch.cuda.is_available():
|
| 90 |
+
device = "cuda"
|
| 91 |
+
elif torch.backends.mps.is_available():
|
| 92 |
+
device = "mps"
|
| 93 |
+
else:
|
| 94 |
+
device = "cpu"
|
| 95 |
+
|
| 96 |
+
print(f"Loading embedding model ({EMBEDDING_MODEL_NAME}) on {device} …")
|
| 97 |
+
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME, device=device)
|
| 98 |
+
|
| 99 |
+
# --- discipline model ---
|
| 100 |
+
disc_ckpt = torch.load(DISCIPLINE_MODEL_PATH, map_location=device, weights_only=False)
|
| 101 |
+
dc = disc_ckpt["model_config"]
|
| 102 |
+
discipline_model = MultiLabelMLP(
|
| 103 |
+
dc["input_dim"], dc["output_dim"],
|
| 104 |
+
tuple(dc["hidden_layers"]), dc["dropout"],
|
| 105 |
+
)
|
| 106 |
+
discipline_model.load_state_dict(disc_ckpt["model_state_dict"])
|
| 107 |
+
discipline_model.to(device).eval()
|
| 108 |
+
discipline_labels = disc_ckpt["class_labels"]
|
| 109 |
+
|
| 110 |
+
# --- concept model ---
|
| 111 |
+
conc_ckpt = torch.load(CONCEPT_MODEL_PATH, map_location=device, weights_only=False)
|
| 112 |
+
cc = conc_ckpt["model_config"]
|
| 113 |
+
concept_model = DisciplineConditionedMLP(
|
| 114 |
+
cc["embedding_dim"], cc["discipline_dim"], cc["output_dim"],
|
| 115 |
+
tuple(cc["hidden_layers"]), cc["dropout"],
|
| 116 |
+
cc.get("discipline_dropout", 0.0), cc.get("use_logits", False),
|
| 117 |
+
)
|
| 118 |
+
concept_model.load_state_dict(conc_ckpt["model_state_dict"])
|
| 119 |
+
concept_model.to(device).eval()
|
| 120 |
+
concept_labels = conc_ckpt["class_labels"]
|
| 121 |
+
|
| 122 |
+
print(f"Loaded {len(discipline_labels)} disciplines, {len(concept_labels)} concepts")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# ---------------------------------------------------------------------------
|
| 126 |
+
# Prediction
|
| 127 |
+
# ---------------------------------------------------------------------------
|
| 128 |
+
|
| 129 |
+
def clean_text(text: str) -> str:
|
| 130 |
+
if not text:
|
| 131 |
+
return ""
|
| 132 |
+
return re.sub(r"\s+", " ", text).strip()
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def predict(title: str, abstract: str, threshold: float, top_k: int):
|
| 136 |
+
"""Run the two-stage cascade and return formatted results."""
|
| 137 |
+
combined = clean_text(title)
|
| 138 |
+
abs_clean = clean_text(abstract)
|
| 139 |
+
if combined and abs_clean:
|
| 140 |
+
combined = f"{combined} [SEP] {abs_clean}"
|
| 141 |
+
elif abs_clean:
|
| 142 |
+
combined = abs_clean
|
| 143 |
+
|
| 144 |
+
if not combined.strip():
|
| 145 |
+
return "Please enter at least a title or abstract.", ""
|
| 146 |
+
|
| 147 |
+
# Embed
|
| 148 |
+
embedding = embedding_model.encode(
|
| 149 |
+
[combined], normalize_embeddings=True, convert_to_numpy=True,
|
| 150 |
+
)
|
| 151 |
+
emb_tensor = torch.FloatTensor(embedding).to(device)
|
| 152 |
+
|
| 153 |
+
with torch.no_grad():
|
| 154 |
+
# Stage 1
|
| 155 |
+
disc_logits = discipline_model(emb_tensor)
|
| 156 |
+
disc_probs = torch.sigmoid(disc_logits).cpu().numpy()[0]
|
| 157 |
+
|
| 158 |
+
# Stage 2
|
| 159 |
+
disc_probs_tensor = torch.FloatTensor(disc_probs).unsqueeze(0).to(device)
|
| 160 |
+
conc_logits = concept_model(emb_tensor, disc_probs_tensor)
|
| 161 |
+
conc_probs = torch.sigmoid(conc_logits).cpu().numpy()[0]
|
| 162 |
+
|
| 163 |
+
# Format discipline results
|
| 164 |
+
disc_order = np.argsort(disc_probs)[::-1]
|
| 165 |
+
disc_lines = []
|
| 166 |
+
for rank, idx in enumerate(disc_order[:top_k], 1):
|
| 167 |
+
prob = disc_probs[idx]
|
| 168 |
+
label = discipline_labels[idx].get("label", f"Discipline_{idx}")
|
| 169 |
+
marker = "**" if prob >= threshold else ""
|
| 170 |
+
disc_lines.append(f"{rank}. {marker}{label}{marker} — {prob:.1%}")
|
| 171 |
+
|
| 172 |
+
# Format concept results
|
| 173 |
+
conc_order = np.argsort(conc_probs)[::-1]
|
| 174 |
+
conc_lines = []
|
| 175 |
+
for rank, idx in enumerate(conc_order[:top_k], 1):
|
| 176 |
+
prob = conc_probs[idx]
|
| 177 |
+
label = concept_labels[idx].get("label", f"Concept_{idx}")
|
| 178 |
+
marker = "**" if prob >= threshold else ""
|
| 179 |
+
conc_lines.append(f"{rank}. {marker}{label}{marker} — {prob:.1%}")
|
| 180 |
+
|
| 181 |
+
disc_md = f"### Disciplines (threshold ≥ {threshold:.0%})\n\n" + "\n".join(disc_lines)
|
| 182 |
+
conc_md = f"### Research-Area Concepts (threshold ≥ {threshold:.0%})\n\n" + "\n".join(conc_lines)
|
| 183 |
+
return disc_md, conc_md
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# ---------------------------------------------------------------------------
|
| 187 |
+
# Gradio UI
|
| 188 |
+
# ---------------------------------------------------------------------------
|
| 189 |
+
|
| 190 |
+
EXAMPLES = [
|
| 191 |
+
[
|
| 192 |
+
"Observation of Gravitational Waves from a Binary Black Hole Merger",
|
| 193 |
+
"On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser "
|
| 194 |
+
"Interferometer Gravitational-Wave Observatory simultaneously observed a "
|
| 195 |
+
"transient gravitational-wave signal. The signal sweeps upwards in frequency "
|
| 196 |
+
"from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10⁻²¹.",
|
| 197 |
+
],
|
| 198 |
+
[
|
| 199 |
+
"Topological Insulators and Superconductors",
|
| 200 |
+
"Topological insulators are electronic materials that have a bulk band gap "
|
| 201 |
+
"like an ordinary insulator but have protected conducting states on their "
|
| 202 |
+
"edge or surface. We review the theoretical foundation for topological "
|
| 203 |
+
"insulators and superconductors and describe recent experiments.",
|
| 204 |
+
],
|
| 205 |
+
[
|
| 206 |
+
"Deep Learning for Particle Physics",
|
| 207 |
+
"We review the application of modern machine learning techniques to the "
|
| 208 |
+
"analysis of data from high-energy particle physics experiments. Neural "
|
| 209 |
+
"networks are used for jet tagging, event classification, anomaly detection, "
|
| 210 |
+
"and fast simulation of detector response.",
|
| 211 |
+
],
|
| 212 |
+
]
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def build_app() -> gr.Blocks:
|
| 216 |
+
with gr.Blocks(
|
| 217 |
+
title="PhySH Taxonomy Classifier",
|
| 218 |
+
theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="slate"),
|
| 219 |
+
) as demo:
|
| 220 |
+
gr.Markdown(
|
| 221 |
+
"# PhySH Taxonomy Classifier\n"
|
| 222 |
+
"Enter a paper **title** and **abstract** to predict APS PhySH disciplines "
|
| 223 |
+
"and research-area concepts using a two-stage hierarchical cascade.\n\n"
|
| 224 |
+
"Labels above the threshold are **bolded**."
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
with gr.Row():
|
| 228 |
+
with gr.Column(scale=2):
|
| 229 |
+
title_box = gr.Textbox(label="Title", lines=2, placeholder="Paper title …")
|
| 230 |
+
abstract_box = gr.Textbox(label="Abstract", lines=8, placeholder="Paper abstract …")
|
| 231 |
+
|
| 232 |
+
with gr.Row():
|
| 233 |
+
threshold_slider = gr.Slider(
|
| 234 |
+
minimum=0.05, maximum=0.95, value=0.35, step=0.05,
|
| 235 |
+
label="Threshold",
|
| 236 |
+
)
|
| 237 |
+
topk_slider = gr.Slider(
|
| 238 |
+
minimum=1, maximum=20, value=10, step=1, label="Top-K",
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
predict_btn = gr.Button("Classify", variant="primary", size="lg")
|
| 242 |
+
|
| 243 |
+
with gr.Column(scale=3):
|
| 244 |
+
disc_output = gr.Markdown(label="Disciplines")
|
| 245 |
+
conc_output = gr.Markdown(label="Concepts")
|
| 246 |
+
|
| 247 |
+
predict_btn.click(
|
| 248 |
+
fn=predict,
|
| 249 |
+
inputs=[title_box, abstract_box, threshold_slider, topk_slider],
|
| 250 |
+
outputs=[disc_output, conc_output],
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
gr.Examples(
|
| 254 |
+
examples=EXAMPLES,
|
| 255 |
+
inputs=[title_box, abstract_box],
|
| 256 |
+
label="Example papers",
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
return demo
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
if __name__ == "__main__":
|
| 263 |
+
load_models()
|
| 264 |
+
app = build_app()
|
| 265 |
+
app.launch()
|
0219_gradio/concept_conditioned_gemma_20260130_140842.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77da740b38d773acad76a8b1f9d8b4a37a28bcefd3ef1d869564fbbcda7e18d7
|
| 3 |
+
size 5733613
|
0219_gradio/discipline_classifier_gemma_20260130_140842.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30d46f03c0a5c10d747525096b46c63909a86c40c7a4adc2c5989846c8e4ae61
|
| 3 |
+
size 5291653
|
0219_gradio/requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=5.0,<6.0
|
| 2 |
+
torch>=2.0
|
| 3 |
+
sentence-transformers>=3.0
|
| 4 |
+
numpy
|