File size: 24,716 Bytes
3f1f4af aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 3f1f4af 7922c49 5b510b1 3f1f4af 059772d 5b510b1 5702453 367454a 3f1f4af 5b510b1 059772d 5b510b1 059772d 5b510b1 5702453 5b510b1 aa1565f 5b510b1 aa1565f 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 3f1f4af 5b510b1 059772d 5b510b1 059772d 5b510b1 059772d 5b510b1 059772d 5b510b1 3f1f4af 5702453 5569839 aa1565f 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 367454a 5b510b1 d18af08 5b510b1 367454a 2f051ee d18af08 5b510b1 d18af08 5b510b1 d18af08 5b510b1 2f051ee 5b510b1 d18af08 5702453 5b510b1 5702453 5b510b1 d18af08 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 367454a 5702453 5b510b1 5702453 5b510b1 5702453 aa1565f 8506538 2f051ee 89661b8 5b510b1 2f051ee 5b510b1 89661b8 5b510b1 89661b8 2f051ee 5b510b1 2f051ee 5b510b1 66d5109 5b510b1 89661b8 2f051ee 89661b8 5b510b1 89661b8 5b510b1 89661b8 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5702453 5b510b1 5702453 aa1565f 5b510b1 5702453 5b510b1 5702453 aa1565f 5b510b1 7922c49 5b510b1 2f051ee aa1565f 7922c49 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 367454a 5b510b1 aa1565f 5b510b1 aa1565f 2f051ee 367454a aa1565f 5b510b1 aa1565f 367454a aa1565f 5b510b1 aa1565f 2f051ee aa1565f 5b510b1 5702453 8506538 f081221 8506538 b8b90d0 5b510b1 89661b8 5b510b1 aa1565f 2f051ee aa1565f 5b510b1 aa1565f 2f051ee aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 2f051ee 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 2f051ee 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 5702453 2f051ee aa1565f 2f051ee aa1565f 5702453 2f051ee 5b510b1 5702453 5b510b1 5702453 5b510b1 ab96d6d 5b510b1 aa1565f 5b510b1 89661b8 5b510b1 89661b8 5b510b1 89661b8 5b510b1 8506538 aa1565f 8506538 b8b90d0 5b510b1 89661b8 5b510b1 89661b8 5b510b1 89661b8 5b510b1 2f051ee 89661b8 5b510b1 89661b8 5b510b1 b8b90d0 aa1565f dee4b1a 5b510b1 89661b8 5b510b1 89661b8 5702453 5b510b1 ab96d6d 5569839 aa1565f 5b510b1 8a0d505 f611130 5b510b1 059772d 2f051ee 5b510b1 b8b90d0 5b510b1 d42e715 5b510b1 d42e715 5b510b1 65c1cec b4749de 5b510b1 b4749de 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 aa1565f 5b510b1 d42e715 5b510b1 d42e715 5b510b1 d42e715 5b510b1 b8b90d0 5b510b1 8a0d505 367454a 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 5b510b1 2f051ee 89661b8 2793805 89661b8 5b510b1 89661b8 5b510b1 89661b8 5b510b1 8a0d505 5702453 5b510b1 89661b8 1475643 5b510b1 89661b8 3c020a5 5b510b1 8a0d505 2793805 2f051ee 5b510b1 367454a 5702453 5b510b1 2f051ee 5b510b1 2f051ee 5b510b1 1475643 5b510b1 d42e715 5b510b1 d42e715 5b510b1 8a0d505 5b510b1 2f051ee d42e715 5b510b1 65c1cec 5b510b1 65c1cec d42e715 5b510b1 8a0d505 3f1f4af 5702453 a9cc3b3 2f051ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import os
import time
import json
import shutil
import random
import requests
import gradio as gr
from openai import OpenAI
from smolagents import CodeAgent, MCPClient, tool
from huggingface_hub import InferenceClient
from quote_generator_gemini import HybridQuoteGenerator
# -------------------------------------------------
# GLOBAL CLIENTS & CONFIG
# -------------------------------------------------
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
# Hybrid Gemini + OpenAI quote generator
hybrid_quote_generator = HybridQuoteGenerator(
gemini_key=os.getenv("GEMINI_API_KEY"),
openai_client=openai_client,
)
# Optional MCP client (non-fatal if not installed)
try:
mcp_client = MCPClient("https://abidlabs-mcp-tools.hf.space")
mcp_enabled = True
except Exception as e:
print(f"MCP initialization warning: {e}")
mcp_enabled = False
# -------------------------------------------------
# TOOLS
# -------------------------------------------------
@tool
def generate_quote_tool(niche: str, style: str) -> str:
"""
Generate a unique inspirational quote using the HybridQuoteGenerator.
Args:
niche: The category of the quote (e.g. Motivation, Fitness, Mindfulness).
style: The visual style or aesthetic (e.g. Cinematic, Nature, Urban).
Returns:
A single quote string. If an error occurs, returns a human-readable error message.
"""
try:
result = hybrid_quote_generator.generate_quote(
niche=niche,
style=style,
prefer_gemini=True,
)
if result.get("success"):
quote = result["quote"]
source = result.get("source")
if source == "gemini":
stats = result.get("stats", {})
print(
f"β¨ Generated with Gemini. Total quotes: "
f"{stats.get('total_quotes_generated', 0)}"
)
else:
print("β¨ Generated with OpenAI fallback")
return quote
else:
return f"Error generating quote: {result.get('error', 'Unknown error')}"
except Exception as e:
return f"Error generating quote: {str(e)}"
@tool
def search_pexels_video_tool(style: str, niche: str) -> dict:
"""
Search and fetch a portrait video from Pexels that matches a style and niche.
Args:
style: Visual style (e.g. Cinematic, Nature, Urban, Minimal, Abstract).
niche: Content niche (e.g. Motivation, Business/Entrepreneurship, Fitness).
Returns:
A dictionary with:
- success: Whether a suitable video was found.
- video_url: The direct link to the video file (or None).
- search_query: The query used to search.
- pexels_url: The Pexels page URL (or None).
- error: Optional error message on failure.
"""
search_strategies = {
"Motivation": {
"Cinematic": ["person climbing mountain", "running sunrise", "achievement success"],
"Nature": ["sunrise mountain peak", "ocean waves powerful", "forest light"],
"Urban": ["city skyline dawn", "person running city", "urban success"],
"Minimal": ["minimal motivation", "single person silhouette", "clean inspiring"],
"Abstract": ["light rays hope", "particles rising", "abstract energy"],
},
"Business/Entrepreneurship": {
"Cinematic": ["business cityscape", "office modern", "handshake deal"],
"Nature": ["growth plant", "river flowing", "sunrise new beginning"],
"Urban": ["city business", "office skyline", "modern workspace"],
"Minimal": ["desk minimal", "workspace clean", "simple office"],
"Abstract": ["network connections", "growth chart", "abstract progress"],
},
"Fitness": {
"Cinematic": ["athlete training", "gym workout", "running outdoor"],
"Nature": ["outdoor workout", "mountain hiking", "beach running"],
"Urban": ["city running", "urban fitness", "street workout"],
"Minimal": ["gym minimal", "simple workout", "clean fitness"],
"Abstract": ["energy motion", "strength power", "dynamic movement"],
},
"Mindfulness": {
"Cinematic": ["meditation sunset", "peaceful landscape", "calm water"],
"Nature": ["forest peaceful", "calm lake", "zen garden"],
"Urban": ["city peaceful morning", "quiet street", "urban calm"],
"Minimal": ["minimal zen", "simple meditation", "clean peaceful"],
"Abstract": ["calm waves", "gentle motion", "soft particles"],
},
"Stoicism": {
"Cinematic": ["ancient architecture", "statue philosopher", "timeless landscape"],
"Nature": ["mountain strong", "oak tree", "stone nature"],
"Urban": ["classical building", "statue city", "ancient modern"],
"Minimal": ["stone minimal", "simple strong", "pillar minimal"],
"Abstract": ["marble texture", "stone abstract", "timeless pattern"],
},
"Leadership": {
"Cinematic": ["team meeting", "leader speaking", "group collaboration"],
"Nature": ["eagle flying", "lion pride", "mountain top"],
"Urban": ["office leadership", "boardroom", "city leadership"],
"Minimal": ["chess pieces", "simple leadership", "clean professional"],
"Abstract": ["network leader", "connection points", "guiding light"],
},
"Love & Relationships": {
"Cinematic": ["couple sunset", "romance beautiful", "love cinematic"],
"Nature": ["couple nature", "romantic sunset", "peaceful together"],
"Urban": ["couple city", "romance urban", "love city lights"],
"Minimal": ["hands holding", "simple love", "minimal romance"],
"Abstract": ["hearts flowing", "love particles", "connection abstract"],
},
}
queries = search_strategies.get(niche, {}).get(style, ["aesthetic nature"])
try:
if not PEXELS_API_KEY:
return {
"success": False,
"video_url": None,
"search_query": "",
"pexels_url": None,
"error": "PEXELS_API_KEY not configured",
}
headers = {"Authorization": PEXELS_API_KEY}
query = random.choice(queries)
url = (
f"https://api.pexels.com/videos/search"
f"?query={query}&per_page=15&orientation=portrait"
)
response = requests.get(url, headers=headers)
data = response.json()
if "videos" in data and len(data["videos"]) > 0:
video = random.choice(data["videos"][:10])
video_files = video.get("video_files", [])
portrait_videos = [
vf for vf in video_files if vf.get("width", 0) < vf.get("height", 0)
]
if portrait_videos:
selected = random.choice(portrait_videos)
return {
"success": True,
"video_url": selected.get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
if video_files:
return {
"success": True,
"video_url": video_files[0].get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
return {
"success": False,
"video_url": None,
"search_query": query,
"pexels_url": None,
"error": "No suitable videos found",
}
except Exception as e:
return {
"success": False,
"video_url": None,
"search_query": "",
"pexels_url": None,
"error": str(e),
}
@tool
def create_quote_video_tool(
video_url: str,
quote_text: str,
output_path: str,
text_style: str = "classic_center",
) -> dict:
"""
Create a quote video by calling a Modal endpoint that overlays text on a background video.
Args:
video_url: Direct URL of the background video (e.g. from Pexels).
quote_text: The quote text to be overlaid on the video.
output_path: Local file path where the resulting video should be saved.
text_style: Visual text style/layout (e.g. 'classic_center', 'lower_third_serif', 'typewriter_top').
Returns:
A dictionary with:
- success: Whether the generation succeeded.
- output_path: The saved video path on disk (or None).
- message: A human-readable status message.
"""
modal_endpoint = os.getenv("MODAL_ENDPOINT_URL")
if not modal_endpoint:
print("βΉοΈ MODAL_ENDPOINT_URL not configured, cannot generate video.")
return {
"success": False,
"output_path": None,
"message": (
"Modal endpoint not configured. Set MODAL_ENDPOINT_URL to use remote "
"video generation (modal deploy modal_video_processing.py)."
),
}
try:
print(f"π Processing on Modal (fast!) with text_style={text_style}...")
response = requests.post(
modal_endpoint,
json={
"video_url": video_url,
"quote_text": quote_text,
"text_style": text_style,
},
timeout=120,
)
if response.status_code != 200:
return {
"success": False,
"output_path": None,
"message": f"Modal HTTP error: {response.status_code}",
}
result = response.json()
if not result.get("success"):
return {
"success": False,
"output_path": None,
"message": f"Modal error: {result.get('error', 'Unknown error')}",
}
import base64
video_b64 = result["video"]
video_bytes = base64.b64decode(video_b64)
with open(output_path, "wb") as f:
f.write(video_bytes)
size_mb = result.get("size_mb", len(video_bytes) / 1024 / 1024)
print(f"β
Modal processing complete! {size_mb:.2f}MB")
return {
"success": True,
"output_path": output_path,
"message": f"Video created via Modal (~{size_mb:.2f}MB, style={text_style}).",
}
except Exception as e:
return {
"success": False,
"output_path": None,
"message": f"Error calling Modal: {str(e)}",
}
# -------------------------------------------------
# AGENT INITIALIZATION
# -------------------------------------------------
def initialize_agent():
"""Initialize the CodeAgent with optional MCP client."""
try:
hf_token = os.getenv("HF_TOKEN")
model = InferenceClient(token=hf_token)
agent = CodeAgent(
tools=[generate_quote_tool, search_pexels_video_tool, create_quote_video_tool],
model=model,
additional_authorized_imports=[
"os",
"time",
"json",
"random",
"requests",
"shutil",
],
max_steps=15,
)
if mcp_enabled:
agent.mcp_clients = [mcp_client]
return agent, None
except Exception as e:
return None, f"Agent initialization error: {str(e)}"
agent, agent_error = initialize_agent()
# -------------------------------------------------
# PIPELINES
# -------------------------------------------------
def mcp_agent_pipeline(
niche: str,
style: str,
text_style: str = "classic_center",
num_variations: int = 1,
):
"""
MAIN PIPELINE: uses smolagents CodeAgent.run to plan & call tools.
The agent:
- calls generate_quote_tool
- calls search_pexels_video_tool multiple times
- calls create_quote_video_tool for each variation
- returns JSON with status_log + video_paths
"""
base_log = ["π€ **MCP AGENT RUN**"]
if agent_error or agent is None:
base_log.append(f"β Agent initialization failed: {agent_error}")
base_log.append("π Falling back to direct tool pipeline...")
status, vids = fallback_pipeline(niche, style, text_style, num_variations)
return "\n".join(base_log + [status]), vids
try:
output_dir = "/tmp/quote_videos"
gallery_dir = "/data/gallery_videos"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(gallery_dir, exist_ok=True)
timestamp = int(time.time())
base_prefix = os.path.join(output_dir, f"agent_{timestamp}_v")
user_task = f"""
You are an autonomous Python agent helping creators generate short vertical quote videos.
Niche: {niche}
Visual Style: {style}
Text style for quotes: {text_style}
Number of variations: {num_variations}
You have these TOOLS available:
1. generate_quote_tool(niche: str, style: str) -> str
- Returns a single SHORT quote as plain text.
2. search_pexels_video_tool(style: str, niche: str) -> dict
- Returns a dict with:
- "success": bool
- "video_url": str or None
3. create_quote_video_tool(
video_url: str,
quote_text: str,
output_path: str,
text_style: str = "classic_center"
) -> dict
- Writes a video file to output_path and returns a dict with:
- "success": bool
- "output_path": str or None
Your job:
1. Call generate_quote_tool once to obtain quote_text.
2. For each variation i from 1 to {num_variations}:
- Call search_pexels_video_tool(style, niche).
- If it succeeds, compute output_path exactly as:
"{base_prefix}" + str(i) + ".mp4"
- Call create_quote_video_tool(video_url, quote_text, output_path, text_style="{text_style}").
3. Collect only variations where create_quote_video_tool returns success == True and a non-empty output_path.
4. Build a human-readable status_log string summarizing:
- Which tools you called
- How many videos succeeded or failed
5. Return ONLY a valid JSON object of the form:
{{
"status_log": "multi-line human readable description of what you did",
"video_paths": [
"{base_prefix}1.mp4",
"... only paths that actually succeeded ..."
]
}}
CRITICAL:
- Do NOT wrap the JSON in markdown or backticks.
- Do NOT add extra keys.
- Do NOT print anything except the JSON object as your final answer.
"""
agent_result = agent.run(user_task)
try:
parsed = json.loads(agent_result)
except Exception as parse_err:
raise ValueError(
f"Agent output was not valid JSON: {parse_err}\n"
f"Raw agent output (first 500 chars): {agent_result[:500]}"
)
status_log = parsed.get("status_log", "")
video_paths = parsed.get("video_paths", [])
valid_paths = [
p for p in video_paths if isinstance(p, str) and os.path.exists(p)
]
if not valid_paths:
raise ValueError("Agent returned no valid video paths or files not found.")
for idx, path in enumerate(valid_paths):
try:
filename = os.path.basename(path)
gallery_path = os.path.join(
gallery_dir,
f"gallery_{timestamp}_v{idx+1}_{filename}",
)
shutil.copy2(path, gallery_path)
except Exception as e:
print(f"β οΈ Failed to copy to gallery for {path}: {e}")
full_status = "\n".join(base_log + [status_log])
return full_status, valid_paths[:3]
except Exception as e:
fallback_status, fallback_videos = fallback_pipeline(
niche, style, text_style, num_variations
)
combined_status = "\n".join(
base_log
+ [
f"β οΈ Agent pipeline error: {str(e)}",
"",
"π Switched to fallback pipeline:",
fallback_status,
]
)
return combined_status, fallback_videos
def fallback_pipeline(
niche: str,
style: str,
text_style: str = "classic_center",
num_variations: int = 1,
):
"""Fallback pipeline: direct tool calls without agent planning."""
status_log = []
status_log.append("π **FALLBACK MODE (Direct Tool Execution)**\n")
status_log.append("π§ Generating quote with HybridQuoteGenerator...")
quote = generate_quote_tool(niche, style)
if isinstance(quote, str) and quote.startswith("Error generating quote"):
return "\n".join(status_log) + f"\nβ {quote}", []
status_log.append(" β
Quote generated\n")
status_log.append(f"π Searching for {num_variations} videos...")
video_results = []
for _ in range(num_variations):
vr = search_pexels_video_tool(style, niche)
if vr.get("success"):
video_results.append(vr)
if not video_results:
status_log.append("β No videos found\n")
return "\n".join(status_log), []
status_log.append(f" β
Found {len(video_results)} videos\n")
status_log.append("π¬ Creating videos via Modal...")
output_dir = "/tmp/quote_videos"
gallery_dir = "/data/gallery_videos"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(gallery_dir, exist_ok=True)
timestamp = int(time.time())
created_videos = []
for i, vr in enumerate(video_results):
output_filename = f"quote_video_v{i+1}_{timestamp}.mp4"
output_path = os.path.join(output_dir, output_filename)
creation_result = create_quote_video_tool(
video_url=vr["video_url"],
quote_text=quote,
output_path=output_path,
text_style=text_style,
)
if creation_result.get("success"):
created_videos.append(creation_result["output_path"])
gallery_filename = f"gallery_{timestamp}_v{i+1}.mp4"
gallery_path = os.path.join(gallery_dir, gallery_filename)
try:
shutil.copy2(creation_result["output_path"], gallery_path)
except Exception as e:
print(f"β οΈ Gallery copy failed: {e}")
else:
error_msg = creation_result.get("message", "Unknown error")
status_log.append(f" β Video {i+1} error: {error_msg}")
if not created_videos:
status_log.append("β Video creation failed\n")
return "\n".join(status_log), []
status_log.append(f" β
Created {len(created_videos)} videos!\n")
status_log.append("π¬ **COMPLETE!**")
return "\n".join(status_log), created_videos
# -------------------------------------------------
# GRADIO UI
# -------------------------------------------------
with gr.Blocks(
title="AIQuoteClipGenerator - MCP + Gemini Edition",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown(
"""
# π¬ AIQuoteClipGenerator
### MCP-Powered with Gemini AI
**Key Features:**
- π Short, non-repeating Gemini quotes (per niche history)
- π€ smolagents CodeAgent for tool planning
- π Optional MCP client integration
- π₯ Modal for fast video rendering
- π
°οΈ Text style controls (font & placement)
"""
)
with gr.Accordion("πΈ Example Gallery - Recent Videos", open=True):
gr.Markdown(
"See what others (or you) have generated. Auto-updates after each run."
)
with gr.Row():
gallery_video1 = gr.Video(height=300, show_label=False, interactive=False)
gallery_video2 = gr.Video(height=300, show_label=False, interactive=False)
gallery_video3 = gr.Video(height=300, show_label=False, interactive=False)
with gr.Row():
gallery_video4 = gr.Video(height=300, show_label=False, interactive=False)
gallery_video5 = gr.Video(height=300, show_label=False, interactive=False)
gallery_video6 = gr.Video(height=300, show_label=False, interactive=False)
def load_gallery_videos():
gallery_output_dir = "/data/gallery_videos"
os.makedirs(gallery_output_dir, exist_ok=True)
import glob
existing_videos = sorted(
glob.glob(os.path.join(gallery_output_dir, "*.mp4")),
key=os.path.getmtime,
reverse=True,
)[:6]
videos = [None] * 6
for i, path in enumerate(existing_videos):
if i < 6:
videos[i] = path
return videos
gr.Markdown("---")
gr.Markdown("## π― Generate Your Own Quote Video")
with gr.Row():
with gr.Column():
gr.Markdown("### π― Input")
niche = gr.Dropdown(
choices=[
"Motivation",
"Business/Entrepreneurship",
"Fitness",
"Mindfulness",
"Stoicism",
"Leadership",
"Love & Relationships",
],
label="π Select Niche",
value="Motivation",
)
style = gr.Dropdown(
choices=["Cinematic", "Nature", "Urban", "Minimal", "Abstract"],
label="π¨ Visual Style",
value="Cinematic",
)
text_style = gr.Dropdown(
choices=[
"classic_center",
"lower_third_serif",
"typewriter_top",
],
label="π
°οΈ Text Style",
value="classic_center",
info="Change font & quote placement on the video",
)
num_variations = gr.Slider(
minimum=1,
maximum=3,
step=1,
value=1,
label="π¬ Number of Video Variations",
info="Generate multiple versions to choose from",
)
generate_btn = gr.Button(
"π€ Run MCP Agent with Gemini", variant="primary", size="lg"
)
with gr.Column():
gr.Markdown("### π MCP Agent Activity Log")
output = gr.Textbox(lines=20, show_label=False)
with gr.Row():
gr.Markdown("### β¨ Your Quote Videos")
with gr.Row():
video1 = gr.Video(label="Video 1", visible=True, height=500)
video2 = gr.Video(label="Video 2", visible=False, height=500)
video3 = gr.Video(label="Video 3", visible=False, height=500)
gr.Markdown(
"""
---
### β¨ Features
- π Gemini-powered, short non-repeating quotes (per niche)
- π¨ Multiple aesthetic video & text layouts
- β‘ Modal-accelerated rendering
- π€ smolagents CodeAgent for autonomous tool-calling
- π Optional MCP integration via MCPClient
### π Hackathon: MCP 1st Birthday
**Track:** Track 2 - MCP in Action
**Category:** Productivity / Creator Tools
**Stack:** Gradio Β· smolagents Β· Gemini Β· OpenAI Β· Pexels Β· Modal Β· MCP
"""
)
def process_and_display(niche, style, text_style, num_variations):
status, videos = mcp_agent_pipeline(
niche=str(niche),
style=str(style),
text_style=str(text_style),
num_variations=int(num_variations),
)
v1 = videos[0] if len(videos) > 0 else None
v2 = videos[1] if len(videos) > 1 else None
v3 = videos[2] if len(videos) > 2 else None
gallery_vids = load_gallery_videos()
return [status, v1, v2, v3] + gallery_vids
generate_btn.click(
process_and_display,
inputs=[niche, style, text_style, num_variations],
outputs=[
output,
video1,
video2,
video3,
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
demo.load(
load_gallery_videos,
outputs=[
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
if __name__ == "__main__":
demo.launch(allowed_paths=["/data/gallery_videos"])
|