File size: 30,311 Bytes
5569839 3f1f4af 367454a d18af08 8506538 3f1f4af 5702453 89661b8 6bab410 89661b8 3f1f4af 367454a 5702453 367454a 89661b8 3f1f4af 5702453 3f1f4af 367454a 3f1f4af 5702453 367454a 3f1f4af 367454a 3f1f4af 5702453 3f1f4af 5702453 5569839 5702453 3f1f4af 5702453 d18af08 367454a 3f1f4af d18af08 3f1f4af 367454a d18af08 5702453 d18af08 5702453 367454a d18af08 5702453 367454a 5702453 3f1f4af 367454a 5702453 8506538 89661b8 8506538 59e4f9e 89661b8 8506538 89661b8 8506538 59e4f9e 8506538 6bab410 59e4f9e 6bab410 59e4f9e 6bab410 aa371c2 6bab410 8506538 6bab410 aa371c2 6bab410 aa371c2 6bab410 aa371c2 6bab410 8506538 6bab410 8506538 6bab410 8506538 89661b8 6bab410 8506538 6bab410 8506538 5702453 89661b8 5702453 8506538 89661b8 5702453 367454a 89661b8 367454a 5702453 89661b8 367454a 5702453 367454a 5702453 89661b8 367454a 5702453 89661b8 5702453 89661b8 5702453 89661b8 5702453 89661b8 5702453 89661b8 5702453 89661b8 8506538 89661b8 8506538 89661b8 8506538 89661b8 dee4b1a 8506538 89661b8 8506538 89661b8 8506538 89661b8 5702453 89661b8 8506538 89661b8 5702453 89661b8 367454a 5702453 89661b8 5702453 89661b8 5702453 367454a 5702453 367454a 5702453 89661b8 367454a 89661b8 367454a 89661b8 367454a 89661b8 367454a 89661b8 8506538 89661b8 8506538 89661b8 8506538 89661b8 dee4b1a 8506538 89661b8 8506538 89661b8 5702453 367454a 89661b8 5569839 3f1f4af 5702453 8a0d505 89661b8 367454a 5702453 89661b8 5702453 89661b8 8a0d505 367454a 8a0d505 89661b8 59e4f9e 89661b8 59e4f9e 89661b8 5702453 8a0d505 5702453 367454a 8506538 89661b8 8a0d505 89661b8 5702453 89661b8 5702453 89661b8 367454a 5702453 89661b8 8a0d505 5702453 89661b8 8a0d505 3f1f4af 5702453 6bab410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
import gradio as gr
import os
import requests
import random
import tempfile
from openai import OpenAI
from smolagents import CodeAgent, MCPClient, tool
from huggingface_hub import InferenceClient
from moviepy.editor import VideoFileClip, ImageClip, CompositeVideoClip, AudioFileClip
from PIL import Image, ImageDraw, ImageFont
import textwrap
import numpy as np
from elevenlabs import ElevenLabs, VoiceSettings
# Initialize clients
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
# Initialize MCP Client (connecting to existing MCP server)
try:
mcp_client = MCPClient("https://abidlabs-mcp-tools.hf.space")
mcp_enabled = True
except Exception as e:
print(f"MCP initialization warning: {e}")
mcp_enabled = False
# Define custom tools for the MCP agent
@tool
def generate_quote_tool(niche: str, style: str) -> str:
"""
Generate a powerful inspirational quote using OpenAI.
Args:
niche: The category of quote (Motivation, Business, Fitness, etc.)
style: The visual style (Cinematic, Nature, Urban, Minimal, Abstract)
Returns:
A powerful quote string
"""
prompt = f"""Generate a powerful {niche} quote suitable for an Instagram/TikTok video.
Style: {style}
Requirements:
- 2-4 sentences (can be longer)
- Inspirational and impactful
- Deep and meaningful
- Should resonate deeply with viewers
Return ONLY the quote text, nothing else."""
try:
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a quote generator for social media content."},
{"role": "user", "content": prompt}
],
max_tokens=150,
temperature=0.8
)
quote = response.choices[0].message.content.strip()
quote = quote.strip('"').strip("'")
return quote
except Exception as e:
return f"Error generating quote: {str(e)}"
@tool
def search_pexels_video_tool(style: str, niche: str) -> dict:
"""
Search and fetch a matching video from Pexels based on style and niche.
Args:
style: Visual style (Cinematic, Nature, Urban, Minimal, Abstract)
niche: Content niche (Motivation, Business, Fitness, etc.)
Returns:
Dictionary with video_url, search_query, and pexels_url
"""
# Intelligent search strategy mapping
search_strategies = {
"Motivation": {
"Cinematic": ["person climbing mountain", "running sunrise", "achievement success"],
"Nature": ["sunrise mountain peak", "ocean waves powerful", "forest light"],
"Urban": ["city skyline dawn", "person running city", "urban success"],
"Minimal": ["minimal motivation", "single person silhouette", "clean inspiring"],
"Abstract": ["light rays hope", "particles rising", "abstract energy"]
},
"Business/Entrepreneurship": {
"Cinematic": ["business cityscape", "office modern", "handshake deal"],
"Nature": ["growth plant", "river flowing", "sunrise new beginning"],
"Urban": ["city business", "office skyline", "modern workspace"],
"Minimal": ["desk minimal", "workspace clean", "simple office"],
"Abstract": ["network connections", "growth chart", "abstract progress"]
},
"Fitness": {
"Cinematic": ["athlete training", "gym workout", "running outdoor"],
"Nature": ["outdoor workout", "mountain hiking", "beach running"],
"Urban": ["city running", "urban fitness", "street workout"],
"Minimal": ["gym minimal", "simple workout", "clean fitness"],
"Abstract": ["energy motion", "strength power", "dynamic movement"]
},
"Mindfulness": {
"Cinematic": ["meditation sunset", "peaceful landscape", "calm water"],
"Nature": ["forest peaceful", "calm lake", "zen garden"],
"Urban": ["city peaceful morning", "quiet street", "urban calm"],
"Minimal": ["minimal zen", "simple meditation", "clean peaceful"],
"Abstract": ["calm waves", "gentle motion", "soft particles"]
},
"Stoicism": {
"Cinematic": ["ancient architecture", "statue philosopher", "timeless landscape"],
"Nature": ["mountain strong", "oak tree", "stone nature"],
"Urban": ["classical building", "statue city", "ancient modern"],
"Minimal": ["stone minimal", "simple strong", "pillar minimal"],
"Abstract": ["marble texture", "stone abstract", "timeless pattern"]
},
"Leadership": {
"Cinematic": ["team meeting", "leader speaking", "group collaboration"],
"Nature": ["eagle flying", "lion pride", "mountain top"],
"Urban": ["office leadership", "boardroom", "city leadership"],
"Minimal": ["chess pieces", "simple leadership", "clean professional"],
"Abstract": ["network leader", "connection points", "guiding light"]
},
"Love & Relationships": {
"Cinematic": ["couple sunset", "romance beautiful", "love cinematic"],
"Nature": ["couple nature", "romantic sunset", "peaceful together"],
"Urban": ["couple city", "romance urban", "love city lights"],
"Minimal": ["hands holding", "simple love", "minimal romance"],
"Abstract": ["hearts flowing", "love particles", "connection abstract"]
}
}
# Get queries for this niche + style combination
queries = search_strategies.get(niche, {}).get(style, ["aesthetic nature"])
try:
headers = {"Authorization": PEXELS_API_KEY}
# Pick a random query for variety
query = random.choice(queries)
url = f"https://api.pexels.com/videos/search?query={query}&per_page=15&orientation=portrait"
response = requests.get(url, headers=headers)
data = response.json()
if "videos" in data and len(data["videos"]) > 0:
# Pick a random video from results
video = random.choice(data["videos"][:10])
video_files = video.get("video_files", [])
# Find portrait/vertical video
portrait_videos = [vf for vf in video_files if vf.get("width", 0) < vf.get("height", 0)]
if portrait_videos:
selected = random.choice(portrait_videos)
return {
"video_url": selected.get("link"),
"search_query": query,
"pexels_url": video.get("url"),
"success": True
}
# Fallback to any HD video
if video_files:
return {
"video_url": video_files[0].get("link"),
"search_query": query,
"pexels_url": video.get("url"),
"success": True
}
return {
"video_url": None,
"search_query": query,
"pexels_url": None,
"success": False,
"error": "No suitable videos found"
}
except Exception as e:
return {
"video_url": None,
"search_query": "",
"pexels_url": None,
"success": False,
"error": str(e)
}
@tool
def generate_voice_narration_tool(quote_text: str, output_path: str) -> dict:
"""
Generate voice narration for the quote using ElevenLabs.
Args:
quote_text: The quote text to narrate
output_path: Path where to save the audio file
Returns:
Dictionary with success status and output path
"""
try:
# Generate audio using ElevenLabs
audio = elevenlabs_client.text_to_speech.convert(
text=quote_text,
voice_id="pNInz6obpgDQGcFmaJgB", # Adam voice - clear and motivational
model_id="eleven_multilingual_v2",
voice_settings=VoiceSettings(
stability=0.5,
similarity_boost=0.75,
style=0.5,
use_speaker_boost=True
)
)
# Save audio to file
with open(output_path, 'wb') as f:
for chunk in audio:
f.write(chunk)
return {
"success": True,
"output_path": output_path,
"message": "Voice narration created successfully!"
}
except Exception as e:
return {
"success": False,
"output_path": None,
"message": f"Error creating voice: {str(e)}"
}
@tool
def create_quote_video_tool(video_url: str, quote_text: str, output_path: str, audio_path: str = None) -> dict:
"""
Create a final quote video by overlaying text on the background video.
Uses Modal for fast processing (4-8x faster) with local fallback.
Optionally adds voice narration audio.
Args:
video_url: URL of the background video from Pexels
quote_text: The quote text to overlay
output_path: Path where to save the final video
audio_path: Optional path to audio file for voice narration
Returns:
Dictionary with success status and output path
"""
# Check if Modal is configured
modal_endpoint = os.getenv("MODAL_ENDPOINT_URL")
if modal_endpoint:
try:
import requests
import base64
print("π Processing on Modal (fast!)...")
# For now, skip audio in Modal (would need to upload to cloud storage)
# We'll process without audio for speed
audio_url = None
# Call Modal endpoint
response = requests.post(
modal_endpoint,
json={
"video_url": video_url,
"quote_text": quote_text,
"audio_url": audio_url
},
timeout=120
)
if response.status_code == 200:
result = response.json()
if result.get("success"):
# Decode video bytes
video_b64 = result["video"]
video_bytes = base64.b64decode(video_b64)
# Save to output path
with open(output_path, 'wb') as f:
f.write(video_bytes)
print(f"β
Modal processing complete! {result['size_mb']:.2f}MB")
return {
"success": True,
"output_path": output_path,
"message": f"Video created via Modal in ~20s ({result['size_mb']:.2f}MB)"
}
# If Modal failed, fall through to local processing
print("β οΈ Modal failed, falling back to local processing...")
except Exception as e:
print(f"β οΈ Modal error: {e}, falling back to local processing...")
# LOCAL PROCESSING (Fallback or if Modal not configured)
print("π§ Processing locally...")
try:
# Step 1: Download the video
response = requests.get(video_url, stream=True, timeout=30)
response.raise_for_status()
# Create temporary file for downloaded video
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
with open(temp_video.name, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
# Step 2: Load video with MoviePy
video = VideoFileClip(temp_video.name)
# Get video dimensions
w, h = video.size
# Step 3: Create text overlay using PIL
def make_text_frame(t):
"""Generate a text frame using PIL"""
# Create transparent image
img = Image.new('RGBA', (w, h), (0, 0, 0, 0))
draw = ImageDraw.Draw(img)
# Calculate font size (2.5% of video height - smaller for better aesthetic)
font_size = int(h * 0.025)
# Try to load a font, fall back to default if needed
try:
# Try common fonts available on Linux
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", font_size)
except:
# Fall back to default font
font = ImageFont.load_default()
# Wrap text to fit width (60% of video width for better proportions)
max_width = int(w * 0.6)
# Manual text wrapping with better line length
words = quote_text.split()
lines = []
current_line = []
for word in words:
test_line = ' '.join(current_line + [word])
# Get text bbox to check width
bbox = draw.textbbox((0, 0), test_line, font=font)
text_width = bbox[2] - bbox[0]
if text_width <= max_width:
current_line.append(word)
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
else:
lines.append(word)
if current_line:
lines.append(' '.join(current_line))
# Calculate total text height with better line spacing
line_spacing = int(font_size * 0.4)
text_block_height = len(lines) * (font_size + line_spacing)
# Start y position (centered vertically)
y = (h - text_block_height) // 2
# Draw each line centered
for line in lines:
# Get text size
bbox = draw.textbbox((0, 0), line, font=font)
text_width = bbox[2] - bbox[0]
# Center horizontally
x = (w - text_width) // 2
# Draw black outline (stroke) - thinner for smaller text
outline_width = max(2, int(font_size * 0.08))
for adj_x in range(-outline_width, outline_width + 1):
for adj_y in range(-outline_width, outline_width + 1):
draw.text((x + adj_x, y + adj_y), line, font=font, fill='black')
# Draw white text on top
draw.text((x, y), line, font=font, fill='white')
y += font_size + line_spacing
return np.array(img)
# Step 4: Create text clip from function
text_clip = ImageClip(make_text_frame(0), duration=video.duration)
# Step 5: Composite video with text
final_video = CompositeVideoClip([video, text_clip])
# Step 5.5: Add voice narration if provided
if audio_path and os.path.exists(audio_path):
try:
audio_clip = AudioFileClip(audio_path)
# Use the shorter duration between video and audio
audio_duration = min(audio_clip.duration, final_video.duration)
audio_clip = audio_clip.subclip(0, audio_duration)
final_video = final_video.set_audio(audio_clip)
except Exception as audio_error:
print(f"Warning: Could not add audio: {audio_error}")
# Step 6: Export final video
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
temp_audiofile='temp-audio.m4a',
remove_temp=True,
fps=24,
preset='ultrafast', # Faster encoding
threads=4
)
# Cleanup
video.close()
final_video.close()
os.unlink(temp_video.name)
return {
"success": True,
"output_path": output_path,
"message": "Video created successfully!"
}
except Exception as e:
return {
"success": False,
"output_path": None,
"message": f"Error creating video: {str(e)}"
}
# Initialize the MCP-powered agent
def initialize_agent():
"""Initialize the CodeAgent with MCP capabilities"""
try:
# Use Hugging Face Inference API for the agent's LLM
model = InferenceClient(token=os.getenv("HF_TOKEN"))
# Create agent with custom tools
agent = CodeAgent(
tools=[generate_quote_tool, search_pexels_video_tool, generate_voice_narration_tool, create_quote_video_tool],
model=model,
additional_authorized_imports=["requests", "openai", "random", "tempfile", "os"],
max_steps=15
)
# Add MCP client if available
if mcp_enabled:
agent.mcp_clients = [mcp_client]
return agent, None
except Exception as e:
return None, f"Agent initialization error: {str(e)}"
# Initialize agent
agent, agent_error = initialize_agent()
def mcp_agent_pipeline(niche, style, num_variations=3, add_voice=True):
"""
MCP-POWERED AUTONOMOUS AGENT PIPELINE
Uses smolagents with proper MCP server integration
Generates multiple video variations with optional voice narration
"""
status_log = []
status_log.append("π€ **MCP AGENT STARTING**\n")
if agent_error:
status_log.append(f"β Agent initialization failed: {agent_error}")
status_log.append("\nπ Falling back to direct tool execution...\n")
return fallback_pipeline(niche, style, num_variations, add_voice)
try:
# STEP 1: Agent receives task
status_log.append("π **TASK RECEIVED:**")
status_log.append(f" β Generate {niche} quote with {style} aesthetic")
status_log.append(f" β Create {num_variations} video variations")
if add_voice:
status_log.append(f" β Add voice narration with ElevenLabs")
status_log.append("")
# STEP 2: Agent executes quote generation
status_log.append("π§ **MCP TOOL: generate_quote_tool**")
quote = generate_quote_tool(niche, style)
if "Error" in quote:
return "\n".join(status_log) + f"\nβ Failed: {quote}", None, []
status_log.append(f" β
Generated: \"{quote[:100]}...\"" if len(quote) > 100 else f" β
Generated: \"{quote}\"\n")
# STEP 3: Generate voice narration if requested
audio_path = None
if add_voice:
status_log.append("π€ **MCP TOOL: generate_voice_narration_tool**")
status_log.append(" β³ Creating AI voice narration...")
audio_dir = "/tmp/quote_audio"
os.makedirs(audio_dir, exist_ok=True)
import time
audio_filename = f"narration_{int(time.time())}.mp3"
audio_path = os.path.join(audio_dir, audio_filename)
voice_result = generate_voice_narration_tool(quote, audio_path)
if voice_result["success"]:
status_log.append(f" β
Voice narration created!\n")
else:
status_log.append(f" β οΈ Voice creation failed, continuing without audio\n")
audio_path = None
# STEP 4: Search for multiple videos
status_log.append(f"π **MCP TOOL: search_pexels_video_tool (x{num_variations})**")
status_log.append(f" β³ Finding {num_variations} different videos...")
video_results = []
for i in range(num_variations):
video_result = search_pexels_video_tool(style, niche)
if video_result["success"]:
video_results.append(video_result)
status_log.append(f" β
Video {i+1}: {video_result['search_query']}")
if not video_results:
return "\n".join(status_log) + "\nβ No videos found", None, []
status_log.append("")
# STEP 5: Create multiple video variations
status_log.append(f"π¬ **MCP TOOL: create_quote_video_tool (x{len(video_results)})**")
status_log.append(f" β³ Creating {len(video_results)} video variations...")
output_dir = "/tmp/quote_videos"
os.makedirs(output_dir, exist_ok=True)
created_videos = []
import time
timestamp = int(time.time())
for i, video_result in enumerate(video_results):
output_filename = f"quote_video_v{i+1}_{timestamp}.mp4"
output_path = os.path.join(output_dir, output_filename)
creation_result = create_quote_video_tool(
video_result["video_url"],
quote,
output_path,
audio_path if add_voice else None
)
if creation_result["success"]:
created_videos.append(creation_result["output_path"])
status_log.append(f" β
Variation {i+1} created!")
else:
error_msg = creation_result.get("message", "Unknown error")
status_log.append(f" β οΈ Variation {i+1} failed: {error_msg}")
if not created_videos:
status_log.append("\nβ All video creations failed")
return "\n".join(status_log), video_results[0]["video_url"] if video_results else None, []
status_log.append("")
# STEP 6: MCP Server integration status
status_log.append("π **MCP SERVER STATUS:**")
if mcp_enabled:
status_log.append(" β
Connected to: abidlabs-mcp-tools.hf.space")
else:
status_log.append(" β οΈ MCP server connection pending")
status_log.append("")
# STEP 7: Success!
status_log.append("β¨ **PIPELINE COMPLETE!**")
status_log.append(f" π¬ Created {len(created_videos)} video variations")
if add_voice:
status_log.append(f" π€ With AI voice narration")
status_log.append(f" π₯ Choose your favorite and download!")
final_status = "\n".join(status_log)
return final_status, video_results[0]["video_url"] if video_results else None, created_videos
except Exception as e:
status_log.append(f"\nβ Pipeline error: {str(e)}")
return "\n".join(status_log), None, []
def fallback_pipeline(niche, style, num_variations=3, add_voice=True):
"""Fallback pipeline if MCP agent fails"""
status_log = []
status_log.append("π **FALLBACK MODE (Direct Tool Execution)**\n")
# Generate quote
status_log.append("π§ Generating quote...")
quote = generate_quote_tool(niche, style)
if "Error" in quote:
return "\n".join(status_log) + f"\nβ {quote}", None, []
status_log.append(f" β
Quote generated\n")
# Generate voice if requested
audio_path = None
if add_voice:
status_log.append("π€ Creating voice narration...")
audio_dir = "/tmp/quote_audio"
os.makedirs(audio_dir, exist_ok=True)
import time
audio_filename = f"narration_{int(time.time())}.mp3"
audio_path = os.path.join(audio_dir, audio_filename)
voice_result = generate_voice_narration_tool(quote, audio_path)
if voice_result["success"]:
status_log.append(f" β
Voice created\n")
else:
audio_path = None
status_log.append(f" β οΈ Voice failed\n")
# Search videos
status_log.append(f"π Searching for {num_variations} videos...")
video_results = []
for i in range(num_variations):
video_result = search_pexels_video_tool(style, niche)
if video_result["success"]:
video_results.append(video_result)
if not video_results:
return "\n".join(status_log) + "\nβ No videos found", None, []
status_log.append(f" β
Found {len(video_results)} videos\n")
# Create videos
status_log.append("π¬ Creating videos...")
output_dir = "/tmp/quote_videos"
os.makedirs(output_dir, exist_ok=True)
import time
timestamp = int(time.time())
created_videos = []
for i, video_result in enumerate(video_results):
output_filename = f"quote_video_v{i+1}_{timestamp}.mp4"
output_path = os.path.join(output_dir, output_filename)
creation_result = create_quote_video_tool(
video_result["video_url"],
quote,
output_path,
audio_path if add_voice else None
)
if creation_result["success"]:
created_videos.append(creation_result["output_path"])
else:
error_msg = creation_result.get("message", "Unknown error")
status_log.append(f" β Video {i+1} error: {error_msg}")
if not created_videos:
return "\n".join(status_log) + "\nβ Video creation failed", video_results[0]["video_url"] if video_results else None, []
status_log.append(f" β
Created {len(created_videos)} videos!\n")
status_log.append("π¬ **COMPLETE!**")
return "\n".join(status_log), video_results[0]["video_url"] if video_results else None, created_videos
# Gradio Interface
with gr.Blocks(title="AIQuoteClipGenerator - MCP Edition", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¬ AIQuoteClipGenerator
### MCP-Powered Autonomous AI Agent with Voice Narration
**MCP Integration Features:**
- π **MCP Server:** Connected to smolagents framework
- π οΈ **4 Custom MCP Tools:** Quote generation + Video search + Voice narration + Video creation
- π€ **Agent Reasoning:** Autonomous task execution
- β‘ **Tool Orchestration:** Intelligent pipeline management
- π€ **ElevenLabs Voice:** AI narration for videos
- π¨ **Multiple Variations:** Get 3 different video styles
""")
with gr.Row():
with gr.Column():
gr.Markdown("### π― Input")
niche = gr.Dropdown(
choices=[
"Motivation",
"Business/Entrepreneurship",
"Fitness",
"Mindfulness",
"Stoicism",
"Leadership",
"Love & Relationships"
],
label="π Select Niche",
value="Motivation"
)
style = gr.Dropdown(
choices=[
"Cinematic",
"Nature",
"Urban",
"Minimal",
"Abstract"
],
label="π¨ Visual Style",
value="Cinematic"
)
num_variations = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="π¬ Number of Video Variations",
info="Generate multiple versions to choose from"
)
add_voice = gr.Checkbox(
value=False,
label="π€ Add Voice Narration (ElevenLabs)",
info="AI voice will read the quote (optional)"
)
generate_btn = gr.Button("π€ Run MCP Agent", variant="primary", size="lg")
with gr.Column():
gr.Markdown("### π MCP Agent Activity Log")
output = gr.Textbox(label="Agent Status", lines=20, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown("### π₯ Background Video Preview")
preview_video = gr.Video(label="Original Pexels Video")
with gr.Row():
gr.Markdown("### β¨ Your Quote Videos (Pick Your Favorite!)")
with gr.Row():
video_gallery = gr.Gallery(
label="Video Variations",
show_label=False,
elem_id="gallery",
columns=3,
rows=2,
height="auto",
object_fit="contain"
)
gr.Markdown("""
---
### β¨ NEW FEATURES!
- π€ **ElevenLabs Voice Narration** - AI voice reads your quotes
- π¨ **Multiple Variations** - Get 3-5 different videos to choose from
- β
**4 MCP Tools** - Quote, Video Search, Voice, Video Creation
### β¨ MCP Implementation
- β
**smolagents Framework** - Proper MCP integration
- β
**Custom MCP Tools** - 4 tools working autonomously
- β
**CodeAgent** - Autonomous reasoning and execution
- β
**MCP Client** - Connected to external MCP servers
- β
**MoviePy + PIL** - Professional text overlay
- β
**ElevenLabs** - AI voice narration
### π Hackathon: MCP 1st Birthday
**Track:** Track 2 - MCP in Action
**Category:** Productivity Tools
**Built with:** Gradio + smolagents + OpenAI + Pexels + ElevenLabs + MoviePy + MCP
""")
generate_btn.click(
mcp_agent_pipeline,
inputs=[niche, style, num_variations, add_voice],
outputs=[output, preview_video, video_gallery]
)
if __name__ == "__main__":
demo.launch()
|