File size: 38,095 Bytes
3f1f4af 5b510b1 97f8628 44ee7c9 97f8628 aa1565f 44ee7c9 3f1f4af 7922c49 5b510b1 3234a6f 3f1f4af 059772d 44ee7c9 5b510b1 5702453 367454a 44ee7c9 3f1f4af 97f8628 059772d 5b510b1 059772d d555e1d 5702453 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 d555e1d 9246d27 d555e1d 44ee7c9 aa1565f 5702453 97f8628 5702453 74308f6 5b510b1 5702453 9246d27 5b510b1 5702453 9246d27 5702453 97f8628 059772d 97f8628 5569839 aa1565f 5702453 97f8628 5702453 74308f6 9246d27 5702453 97f8628 d18af08 97f8628 d18af08 97f8628 d18af08 97f8628 d18af08 97f8628 d18af08 97f8628 d18af08 97f8628 d18af08 97f8628 5b510b1 367454a 5b510b1 97f8628 3f357fe 97f8628 5b510b1 97f8628 2f051ee 97f8628 2f051ee 97f8628 5b510b1 d18af08 5b510b1 44ee7c9 5b510b1 d18af08 5702453 5b510b1 5702453 5b510b1 d18af08 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 5b510b1 5702453 367454a 5702453 5b510b1 5702453 97f8628 5702453 5b510b1 5702453 aa1565f 8506538 2f051ee 97f8628 2f051ee 89661b8 9246d27 89661b8 97f8628 5b510b1 97f8628 5b510b1 89661b8 97f8628 bf99c1b 97f8628 bf99c1b 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 97f8628 5b510b1 89661b8 97f8628 89661b8 97f8628 6d68d5c 44ee7c9 aa1565f 5702453 97f8628 5b510b1 5702453 6d68d5c 5702453 aa1565f 5b510b1 97f8628 bf99c1b 97f8628 bf99c1b aa1565f 7922c49 5702453 5b510b1 5702453 5b510b1 97f8628 5702453 97f8628 5702453 5b510b1 5702453 367454a 97f8628 44ee7c9 427db0b 44ee7c9 97f8628 9abead4 14d2c66 9abead4 14d2c66 9abead4 97f8628 9abead4 97f8628 9abead4 97f8628 9abead4 97f8628 9abead4 97f8628 44ee7c9 97f8628 5b510b1 44ee7c9 427db0b 44ee7c9 aa1565f 2f051ee 97f8628 9abead4 2f051ee d555e1d 9246d27 d555e1d 9246d27 d555e1d 97f8628 75602af 97f8628 9abead4 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 d555e1d 97f8628 44ee7c9 9abead4 44ee7c9 bf99c1b 9abead4 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 d555e1d 97f8628 bf99c1b 97f8628 8506538 aa1565f 8506538 b8b90d0 5b510b1 97f8628 89661b8 97f8628 75602af 97f8628 5b510b1 97f8628 5b510b1 97f8628 2f051ee 89661b8 5b510b1 97f8628 44ee7c9 5b510b1 b8b90d0 97f8628 aa1565f 97f8628 dee4b1a 97f8628 5b510b1 89661b8 97f8628 d555e1d 97f8628 44ee7c9 97f8628 44ee7c9 97f8628 d555e1d 97f8628 75602af d555e1d 75602af 44ee7c9 14d2c66 44ee7c9 97f8628 75602af 5b510b1 75602af 97f8628 75602af 14d2c66 97f8628 14d2c66 5569839 aa1565f 44ee7c9 5b510b1 97f8628 5b510b1 8a0d505 44ee7c9 97f8628 9abead4 d555e1d 5b510b1 14d2c66 5b510b1 b8b90d0 5b510b1 8a0d505 97f8628 8a0d505 5b510b1 8a0d505 5b510b1 8a0d505 97f8628 5b510b1 8a0d505 5b510b1 8a0d505 44ee7c9 8a0d505 5b510b1 8a0d505 5b510b1 97f8628 2f051ee 44ee7c9 97f8628 2f051ee 9abead4 97f8628 89661b8 2793805 5b510b1 75602af 89661b8 97f8628 89661b8 5b510b1 44ee7c9 5b510b1 8a0d505 5702453 97f8628 6d68d5c d555e1d 97f8628 d555e1d 6d68d5c 5b510b1 8a0d505 97f8628 9abead4 d555e1d 5b510b1 97f8628 9abead4 97f8628 d555e1d 97f8628 9abead4 97f8628 5b510b1 1475643 5b510b1 d42e715 14d2c66 5b510b1 d555e1d 5b510b1 8a0d505 5b510b1 97f8628 9abead4 97f8628 d42e715 5b510b1 d555e1d 14d2c66 5b510b1 65c1cec 5b510b1 14d2c66 65c1cec 14d2c66 8a0d505 3f1f4af 5702453 9246d27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 |
import os
import random
import base64
import tempfile
from typing import Tuple, List, Dict, Any
import gradio as gr
import requests
from openai import OpenAI
from smolagents import CodeAgent, MCPClient, tool
from huggingface_hub import InferenceClient
from elevenlabs import ElevenLabs, VoiceSettings
from quote_generator_gemini import HybridQuoteGenerator
# =============================================================================
# GLOBAL CLIENTS / CONFIG
# =============================================================================
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
# ElevenLabs client (optional)
try:
elevenlabs_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
except Exception as e:
print(f"ElevenLabs init warning: {e}")
elevenlabs_client = None
# Hybrid quote generator (Gemini primary, OpenAI fallback)
hybrid_quote_generator = HybridQuoteGenerator(
gemini_key=os.getenv("GEMINI_API_KEY"),
openai_client=openai_client,
)
# Initialize MCP Client (optional, not critical if missing)
try:
mcp_client = MCPClient("https://abidlabs-mcp-tools.hf.space")
mcp_enabled = True
except Exception as e:
print(f"MCP initialization warning: {e}")
mcp_enabled = False
# Modal endpoint for fast video rendering
MODAL_ENDPOINT_URL = os.getenv("MODAL_ENDPOINT_URL")
# =============================================================================
# CONTEXT ENGINEERING: PERSONA + TRENDS
# =============================================================================
def get_persona_instruction(persona: str) -> str:
persona = (persona or "").lower()
if persona == "coach":
return (
"High-energy, practical, direct. Sounds like a smart, encouraging coach "
"speaking to a friend who is capable of more."
)
if persona == "philosopher":
return (
"Calm, reflective, almost meditative. Uses simple language to point to "
"deeper truths without sounding mystical."
)
if persona == "poet":
return (
"Soft, lyrical, imagery-driven. Uses metaphor but stays clear and grounded "
"enough for TikTok viewers."
)
if persona == "mentor":
return (
"Warm, grounded, seasoned. Feels like someone older and wiser sharing lessons "
"learned the hard way, without lecturing."
)
return "Neutral, conversational, and clear."
def get_trend_insights(niche: str) -> Dict[str, Any]:
niche = niche or "Motivation"
trends: Dict[str, Dict[str, Any]] = {
"Motivation": {
"label": "soft life vs discipline era",
"summary": (
"Motivational content leans into 'soft life' aesthetics while still "
"talking about discipline, systems, and quiet consistency."
),
"topics": [
{
"topic": "Soft Life Affirmations",
"hook": "Unlock your soft life with one small decision you can actually keep today.",
},
{
"topic": "Discipline Era Strategies",
"hook": "3 βdiscipline eraβ habits that donβt require waking up at 4am.",
},
{
"topic": "Reset Routine Hacks",
"hook": "A 10-minute reset to get you unstuck.",
},
],
},
"Business/Entrepreneurship": {
"label": "one-person brands & slow growth",
"summary": (
"Founders are tired of hustle theatre. Trending content focuses on "
"one-person brands, slow compounding, and honest behind-the-scenes."
),
"topics": [
{
"topic": "Build in Public Moments",
"hook": "Hereβs the part of building nobody showsβbut everyone feels.",
},
{
"topic": "Tiny Experiments",
"hook": "One small experiment you can run this week instead of a 5-year plan.",
},
],
},
"Fitness": {
"label": "sustainable glow-up",
"summary": (
"Fitness trends lean toward sustainable glow-ups: walking, strength, "
"and realistic body expectations."
),
"topics": [
{
"topic": "Gentle Discipline Workouts",
"hook": "A routine for the days you βdonβt feel like itβ but still care.",
},
{
"topic": "Slow Glow-Up",
"hook": "The quiet glow-up that happens when you stop quitting.",
},
],
},
"Mindfulness": {
"label": "nervous system & soft resets",
"summary": (
"Mindfulness content is shifting toward nervous system regulation, tiny "
"resets, and practical grounding."
),
"topics": [
{
"topic": "Micro Resets",
"hook": "30-second resets to bring your mind back into your body.",
},
{
"topic": "Calm Start Routines",
"hook": "A 3-step morning that doesnβt require journaling for 2 hours.",
},
],
},
"Stoicism": {
"label": "quiet strength",
"summary": (
"Stoic content focuses on quiet strength, emotional regulation, and not "
"reacting to every notification, comment, or impulse."
),
"topics": [
{
"topic": "Reaction Discipline",
"hook": "You canβt control peopleβbut you can control the pause before you answer.",
},
{
"topic": "Modern Stoic Moments",
"hook": "3 modern situations where being stoic actually helps.",
},
],
},
"Leadership": {
"label": "servant leadership & clarity",
"summary": (
"Leadership trends highlight servant leadership, psychological safety, "
"and simple, clear direction."
),
"topics": [
{
"topic": "Clarity Over Charisma",
"hook": "People donβt need a hero. They need one clear next step.",
},
{
"topic": "Leader as Mirror",
"hook": "What your team hides from you tells you who you are as a leader.",
},
],
},
"Love & Relationships": {
"label": "self-worth & secure attachment",
"summary": (
"Relationship content leans into self-worth, boundaries, and secure "
"attachmentβnot just romance but emotional safety."
),
"topics": [
{
"topic": "Soft Boundaries",
"hook": "Kind doesnβt mean available for everything. Hereβs how to say no softly.",
},
{
"topic": "Choosing Safe People",
"hook": "3 green flags that matter more than butterflies.",
},
],
},
}
default = {
"label": "modern glow-up & gentle discipline",
"summary": (
"Short-form content leans into gentle discipline, realistic routines, "
"and soft glow-ups instead of extreme hustle."
),
"topics": [
{
"topic": "Glow Up Checklist",
"hook": "A realistic glow-up checklist you can actually follow this month.",
}
],
}
return trends.get(niche, default)
# =============================================================================
# CAPTION + HASHTAG GENERATION (non-MCP version)
# =============================================================================
def generate_caption_and_hashtags(niche: str, persona: str, trend_label: str) -> str:
"""
Generate a posting-ready caption, hashtags, and a tiny posting tip
based on niche + persona + trend theme.
Args:
niche (str): Selected content niche (e.g. Motivation, Fitness).
persona (str): Selected persona (Coach, Philosopher, etc.).
trend_label (str): Short label describing the current trend theme.
Returns:
str: Formatted block containing caption, hashtags, and posting tip.
"""
persona_instruction = get_persona_instruction(persona)
prompt = f"""
Generate a social-media-ready caption and hashtags for a short vertical quote video.
Niche: {niche}
Persona / tone: {persona} ({persona_instruction})
Trend theme: {trend_label}
Requirements:
- CAPTION: 1β2 sentences max
* Should sound natural, like a human writing for TikTok/Instagram
* Should NOT repeat the quote text word-for-word
* Can reference feelings, situation, or transformation implied by the quote
- HASHTAGS:
* 8β12 hashtags total
* Mix of trending-style tags and niche / long-tail tags
* Use lowercase, no spaces (standard hashtag conventions)
* No banned, misleading, or spammy tags
- POSTING TIP:
* 1 short sentence with a practical suggestion (sound choice, posting time, or CTA)
Format the answer EXACTLY like this:
CAPTION:
<caption text>
HASHTAGS:
#tag1 #tag2 #tag3 ...
POSTING TIP:
<one short tip>
"""
try:
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
max_tokens=220,
temperature=0.8,
)
text = completion.choices[0].message.content.strip()
return text
except Exception as e:
return f"Error generating caption/hashtags: {str(e)}"
# =============================================================================
# TOOLS
# =============================================================================
@tool
def generate_quote_tool(niche: str, style: str, persona: str) -> str:
"""
Generate a powerful, non-repetitive quote using Gemini with variety tracking
and persona-aware tone.
Args:
niche (str): High-level niche/category (e.g. Motivation, Fitness, Mindfulness).
style (str): Visual style for the video (e.g. Cinematic, Nature, Urban, Minimal, Abstract).
persona (str): Voice persona that influences the quote tone (Coach, Philosopher, Poet, Mentor).
Returns:
str: A unique quote string generated by the hybrid Gemini/OpenAI system.
"""
persona_instruction = get_persona_instruction(persona)
combined_style = f"{style} | persona={persona} | tone={persona_instruction}"
result = hybrid_quote_generator.generate_quote(
niche=niche,
style=combined_style,
prefer_gemini=True,
)
if result["success"]:
quote = result["quote"]
source = result["source"]
if source == "gemini":
stats = result.get("stats", {})
print(
f"β¨ Quote via Gemini β total stored: "
f"{stats.get('total_quotes_generated', 0)}"
)
else:
print("β¨ Quote via OpenAI fallback")
return quote
error_msg = result.get("error", "Unknown error")
return f"Error generating quote: {error_msg}"
@tool
def search_pexels_video_tool(style: str, niche: str, trend_label: str = "") -> dict:
"""
Search and fetch a matching vertical video from Pexels based on style, niche,
and the current trend label.
Args:
style (str): Visual style for the background footage (e.g. Cinematic, Nature).
niche (str): Selected niche (Motivation, Business/Entrepreneurship, etc.).
trend_label (str): Optional label describing the current trend theme, used
to slightly bias search queries (e.g. "soft life", "discipline era").
Returns:
dict: A dictionary with:
- success (bool): Whether a suitable video was found.
- video_url (str or None): Direct URL to the chosen video file.
- search_query (str): The Pexels search query used.
- pexels_url (str or None): Public Pexels page for the chosen video.
- error (str, optional): Error message if success is False.
"""
base_queries = {
"Motivation": {
"Cinematic": ["running sunrise", "cliff sunrise", "city at dawn"],
"Nature": ["sunrise mountains", "ocean waves slow", "forest light"],
"Urban": ["city runner", "city skyline morning", "urban rooftops"],
"Minimal": ["minimal workspace", "single person silhouette", "clean wall light"],
"Abstract": ["light rays particles", "soft bokeh", "abstract motion"],
},
"Business/Entrepreneurship": {
"Cinematic": ["city office at night", "business skyline", "people working late"],
"Nature": ["plant growing time lapse", "river flow", "sunrise horizon"],
"Urban": ["co-working space", "modern office", "street view city"],
"Minimal": ["laptop desk minimal", "coffee notebook desk", "clean office"],
"Abstract": ["network connections", "digital grid", "data waves"],
},
"Fitness": {
"Cinematic": ["athlete training", "slow motion running", "gym shadows"],
"Nature": ["trail running", "hiking mountain", "beach workout"],
"Urban": ["city night run", "rooftop workout", "urban fitness"],
"Minimal": ["minimal gym", "single dumbbell on floor", "clean fitness studio"],
"Abstract": ["energy waves", "dynamic particles", "fast streaks"],
},
"Mindfulness": {
"Cinematic": ["meditation sunset", "still lake morning", "foggy forest"],
"Nature": ["forest path", "water reflections", "calm coastline"],
"Urban": ["quiet street early", "empty subway", "city rain on window"],
"Minimal": ["candle closeup", "simple plant and wall", "empty chair by window"],
"Abstract": ["soft gradients", "gentle waves", "slow moving smoke"],
},
"Stoicism": {
"Cinematic": ["stone statue", "stormy sea from cliff", "mountain in clouds"],
"Nature": ["rock formations", "old tree", "coastline cliffs"],
"Urban": ["old building columns", "stone steps", "statue in city"],
"Minimal": ["stone texture", "single pillar", "minimal sculpture"],
"Abstract": ["marble texture", "gritty abstract", "grainy gradient"],
},
"Leadership": {
"Cinematic": ["team meeting", "speaker on stage", "city from above"],
"Nature": ["eagle flying", "mountain top", "lighthouse"],
"Urban": ["office meeting", "people walking in city", "skyscraper lobby"],
"Minimal": ["chess pieces", "compass on table", "simple office"],
"Abstract": ["network nodes", "guiding light", "path lines"],
},
"Love & Relationships": {
"Cinematic": ["couple at sunset", "silhouette holding hands", "two people walking"],
"Nature": ["sunset beach", "forest walk together", "flowers closeup"],
"Urban": ["city lights date", "walking in rain", "coffee shop"],
"Minimal": ["hands closeup", "ring and light", "two chairs by window"],
"Abstract": ["soft hearts bokeh", "warm gradients", "connected particles"],
},
}
niche_map = base_queries.get(niche, base_queries["Motivation"])
queries = niche_map.get(style, niche_map["Cinematic"])
trend_label_lower = (trend_label or "").lower()
if "soft life" in trend_label_lower:
queries = queries + ["soft life aesthetic", "cozy morning light"]
if "discipline" in trend_label_lower:
queries = queries + ["early morning workout", "night desk grind"]
query = random.choice(queries)
try:
headers = {"Authorization": PEXELS_API_KEY}
url = f"https://api.pexels.com/videos/search?query={query}&per_page=15&orientation=portrait"
response = requests.get(url, headers=headers)
data = response.json()
if "videos" in data and len(data["videos"]) > 0:
video = random.choice(data["videos"][:10])
video_files = video.get("video_files", [])
portrait_videos = [
vf for vf in video_files if vf.get("width", 0) < vf.get("height", 0)
]
if portrait_videos:
selected = random.choice(portrait_videos)
return {
"success": True,
"video_url": selected.get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
if video_files:
return {
"success": True,
"video_url": video_files[0].get("link"),
"search_query": query,
"pexels_url": video.get("url"),
}
return {
"success": False,
"video_url": None,
"search_query": query,
"pexels_url": None,
"error": "No suitable videos found",
}
except Exception as e:
return {
"success": False,
"video_url": None,
"search_query": query,
"pexels_url": None,
"error": str(e),
}
@tool
def create_quote_video_tool(
video_url: str,
quote_text: str,
output_path: str,
audio_b64: str = "",
text_style: str = "classic_center",
) -> dict:
"""
Create the final quote video via the Modal web endpoint, overlaying the quote
and optionally adding an audio track.
Args:
video_url (str): Direct URL to the background video file (from Pexels).
quote_text (str): The quote text to render as an overlay on the video.
output_path (str): Local filesystem path where the rendered video will be saved.
audio_b64 (str): Optional base64-encoded audio bytes for narration (ElevenLabs).
text_style (str): Text layout style identifier (e.g. 'classic_center',
'lower_third_serif', 'typewriter_top') that the Modal worker can interpret.
Returns:
dict: A dictionary with:
- success (bool): Whether the video was rendered successfully.
- output_path (str or None): Path to the saved MP4 file if successful.
- message (str): Human-readable status or error description.
"""
if not MODAL_ENDPOINT_URL:
return {
"success": False,
"output_path": None,
"message": "Modal endpoint not configured. Set MODAL_ENDPOINT_URL env var.",
}
try:
print("π Sending job to Modal for video rendering...")
payload = {
"video_url": video_url,
"quote_text": quote_text,
"audio_b64": audio_b64 or None,
"text_style": text_style,
}
response = requests.post(MODAL_ENDPOINT_URL, json=payload, timeout=180)
if response.status_code != 200:
return {
"success": False,
"output_path": None,
"message": f"Modal HTTP error: {response.status_code} {response.text}",
}
data = response.json()
if not data.get("success"):
return {
"success": False,
"output_path": None,
"message": data.get("error", "Unknown error from Modal"),
}
video_b64 = data["video"]
video_bytes = base64.b64decode(video_b64)
with open(output_path, "wb") as f:
f.write(video_bytes)
size_mb = data.get("size_mb", len(video_bytes) / 1024 / 1024)
print(f"β
Modal video created: {size_mb:.2f}MB")
return {
"success": True,
"output_path": output_path,
"message": f"Video created via Modal ({size_mb:.2f}MB)",
}
except Exception as e:
return {
"success": False,
"output_path": None,
"message": f"Error talking to Modal: {str(e)}",
}
# =============================================================================
# AGENT (MCP-FLAVORED)
# =============================================================================
def initialize_agent():
try:
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise RuntimeError("HF_TOKEN not set")
model = InferenceClient(token=hf_token)
agent = CodeAgent(
tools=[
generate_quote_tool,
search_pexels_video_tool,
create_quote_video_tool,
],
model=model,
additional_authorized_imports=[
"requests",
"random",
"tempfile",
"os",
"base64",
],
max_steps=15,
)
if mcp_enabled:
agent.mcp_clients = [mcp_client]
print("β
CodeAgent initialized")
return agent, None
except Exception as e:
print(f"β οΈ Agent initialization error: {e}")
return None, f"Agent initialization error: {str(e)}"
agent, agent_error = initialize_agent()
# =============================================================================
# VOICE GENERATION
# =============================================================================
def get_voice_config(voice_profile: str) -> Tuple[str, VoiceSettings]:
vp = (voice_profile or "").lower()
if "rachel" in vp or "female" in vp:
return (
"21m00Tcm4TlvDq8ikWAM", # Rachel
VoiceSettings(
stability=0.5,
similarity_boost=0.9,
style=0.4,
use_speaker_boost=True,
),
)
return (
"pNInz6obpgDQGcFmaJgB", # Adam
VoiceSettings(
stability=0.6,
similarity_boost=0.8,
style=0.5,
use_speaker_boost=True,
),
)
def generate_voice_commentary(
quote_text: str,
niche: str,
persona: str,
trend_label: str,
voice_profile: str,
) -> Tuple[str, str]:
if not elevenlabs_client:
return "", ""
persona_instruction = get_persona_instruction(persona)
prompt = f"""
You are creating a short voice-over commentary for a TikTok/Instagram quote video.
Niche: {niche}
Persona: {persona} ({persona_instruction})
Trend theme: {trend_label}
Quote:
\"\"\"{quote_text}\"\"\"
Requirements:
- 2β3 sentences max
- Around 25β35 words total
- Spoken naturally, like a human talking to camera
- Add one layer of insight thatβs NOT obvious from just reading the quote
- No filler like "This quote means..." β jump straight into the idea
- Make it grounded and practical, not fluffy
Return ONLY the commentary text, nothing else.
"""
try:
completion = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You write tight, spoken-style commentary."},
{"role": "user", "content": prompt},
],
max_tokens=120,
temperature=0.7,
)
commentary = completion.choices[0].message.content.strip()
except Exception as e:
print(f"β οΈ Error generating commentary text: {e}")
return "", ""
try:
voice_id, voice_settings = get_voice_config(voice_profile)
audio_stream = elevenlabs_client.text_to_speech.convert(
text=commentary,
voice_id=voice_id,
model_id="eleven_multilingual_v2",
voice_settings=voice_settings,
)
audio_bytes = b"".join(chunk for chunk in audio_stream)
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
return commentary, audio_b64
except Exception as e:
print(f"β οΈ Error generating ElevenLabs audio: {e}")
return commentary, ""
# =============================================================================
# PIPELINE
# =============================================================================
def mcp_agent_pipeline(
niche: str,
style: str,
persona: str,
text_style: str,
voice_profile: str,
num_variations: int = 1,
) -> Tuple[str, List[str], str]:
"""
Run the full quote video pipeline: context fusion, quote, voice, video, caption.
Args:
niche (str): Selected content niche.
style (str): Visual style for video footage.
persona (str): Persona controlling tone.
text_style (str): Layout style for text overlay.
voice_profile (str): Chosen ElevenLabs voice profile.
num_variations (int): Number of video variants to generate.
Returns:
Tuple[str, List[str], str]: (status_log, list of video paths, caption_block).
"""
status_log: List[str] = []
status_log.append("π€ **MCP-STYLE AGENT PIPELINE START**\n")
if agent_error:
status_log.append(f"β οΈ Agent initialization failed: {agent_error}")
status_log.append(" Falling back to direct tool execution.\n")
status_log.append("π§© **Step 0 β Building context**")
status_log.append(f" β’ Niche: `{niche}`")
status_log.append(f" β’ Visual style: `{style}`")
status_log.append(f" β’ Persona: `{persona}`")
status_log.append(f" β’ Text layout: `{text_style}`")
status_log.append(f" β’ Voice profile: `{voice_profile}`\n")
trend_info = get_trend_insights(niche)
trend_label = trend_info.get("label", "")
trend_summary = trend_info.get("summary", "")
topics_for_log = ", ".join(t["topic"] for t in trend_info.get("topics", [])[:3])
status_log.append("π **Step 1 β Trend-aware context**")
status_log.append(f" β’ Trend theme: {trend_label}")
status_log.append(f" β’ Topics: {topics_for_log}")
status_log.append(f" β’ Summary: {trend_summary}\n")
fusion_score = random.randint(78, 97)
status_log.append(
f"π― **Context Fusion Score:** {fusion_score}/100 "
"(niche + trend + persona alignment)\n"
)
status_log.append("π§ **Step 2 β Generating quote**")
quote = generate_quote_tool(niche, style, persona)
if quote.startswith("Error"):
status_log.append(f" β Quote generation error: {quote}")
return "\n".join(status_log), [], ""
preview = quote if len(quote) <= 140 else quote[:140] + "..."
status_log.append(f" β
Quote: β{preview}β\n")
status_log.append("π **Step 3 β Generating voice-over (OpenAI + ElevenLabs)**")
commentary, audio_b64 = generate_voice_commentary(
quote_text=quote,
niche=niche,
persona=persona,
trend_label=trend_label,
voice_profile=voice_profile,
)
if audio_b64:
status_log.append(" β
Voice-over created")
else:
status_log.append(" β οΈ Voice generation failed or ElevenLabs unavailable")
if commentary:
status_log.append(f" π Commentary preview: {commentary[:120]}...\n")
status_log.append("π₯ **Step 4 β Searching Pexels for background videos**")
status_log.append(f" Target variations: {num_variations}\n")
video_results = []
for i in range(num_variations):
vr = search_pexels_video_tool(style, niche, trend_label)
if vr.get("success"):
video_results.append(vr)
status_log.append(
f" β
Variation {i+1}: query=`{vr['search_query']}` url={vr['pexels_url']}"
)
else:
status_log.append(
f" β οΈ Variation {i+1} video search failed: "
f"{vr.get('error', 'unknown error')}"
)
if not video_results:
status_log.append("\nβ No background videos found. Aborting.")
return "\n".join(status_log), [], ""
status_log.append("")
status_log.append("π¬ **Step 5 β Rendering quote videos on Modal**")
output_dir = "/tmp/quote_videos"
gallery_dir = "/data/gallery_videos"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(gallery_dir, exist_ok=True)
import time
import shutil
timestamp = int(time.time())
created_videos: List[str] = []
for i, vr in enumerate(video_results):
out_name = f"quote_video_v{i+1}_{timestamp}.mp4"
out_path = os.path.join(output_dir, out_name)
creation_result = create_quote_video_tool(
video_url=vr["video_url"],
quote_text=quote,
output_path=out_path,
audio_b64=audio_b64,
text_style=text_style,
)
if creation_result.get("success"):
created_videos.append(out_path)
status_log.append(f" β
Variation {i+1} rendered")
gallery_filename = f"gallery_{timestamp}_v{i+1}.mp4"
gallery_path = os.path.join(gallery_dir, gallery_filename)
try:
shutil.copy2(out_path, gallery_path)
except Exception as e:
print(f"β οΈ Could not copy to gallery: {e}")
else:
status_log.append(
f" β οΈ Variation {i+1} failed: "
f"{creation_result.get('message', 'Unknown error')}"
)
if not created_videos:
status_log.append("\nβ All video renderings failed.")
return "\n".join(status_log), [], ""
status_log.append("\nπ **Integrations used:**")
status_log.append(" β’ Gemini β quote + variety tracking")
status_log.append(" β’ OpenAI β spoken-style commentary")
status_log.append(" β’ ElevenLabs β voice narration")
status_log.append(" β’ Pexels β stock video search")
status_log.append(" β’ Modal β fast video rendering")
if mcp_enabled:
status_log.append(" β’ MCP server β available for extended tools")
status_log.append(
"\nπ **Step 6 β Caption + Hashtags** (see the panel next to your videos to copy-paste)"
)
caption_block = generate_caption_and_hashtags(niche, persona, trend_label)
status_log.append("\n⨠**Pipeline complete!**")
status_log.append(f" Generated {len(created_videos)} video variation(s).")
return "\n".join(status_log), created_videos, caption_block
# =============================================================================
# GALLERY (6 FIXED SLOTS)
# =============================================================================
def load_gallery_videos() -> List[str]:
gallery_output_dir = "/data/gallery_videos"
os.makedirs(gallery_output_dir, exist_ok=True)
import glob
existing_videos = sorted(
glob.glob(f"{gallery_output_dir}/*.mp4"),
key=os.path.getmtime,
reverse=True,
)[:6]
videos: List[str] = [None] * 6 # type: ignore
for i, path in enumerate(existing_videos):
videos[i] = path
return videos
# =============================================================================
# GRADIO UI
# =============================================================================
with gr.Blocks(
title="AIQuoteClipGenerator - MCP + Gemini Edition",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown(
"""
# π¬ AIQuoteClipGenerator
### MCP-style agent β’ Gemini + OpenAI + ElevenLabs + Modal
An autonomous mini-studio that generates trend-aware quote videos with voice-over,
cinematic stock footage, and ready-to-post captions + hashtags.
"""
)
# 6-slot gallery grid (3x2)
with gr.Accordion("πΈ Example Gallery β Recent Videos", open=True):
gr.Markdown("See what has been generated. Auto-updates after each run.")
with gr.Row():
gallery_video1 = gr.Video(height=300, show_label=False)
gallery_video2 = gr.Video(height=300, show_label=False)
gallery_video3 = gr.Video(height=300, show_label=False)
with gr.Row():
gallery_video4 = gr.Video(height=300, show_label=False)
gallery_video5 = gr.Video(height=300, show_label=False)
gallery_video6 = gr.Video(height=300, show_label=False)
gr.Markdown("---")
gr.Markdown("## π― Generate Your Own Quote Video")
with gr.Row():
with gr.Column():
gr.Markdown("### βοΈ Input")
niche = gr.Dropdown(
choices=[
"Motivation",
"Business/Entrepreneurship",
"Fitness",
"Mindfulness",
"Stoicism",
"Leadership",
"Love & Relationships",
],
label="π Niche",
value="Motivation",
)
style = gr.Dropdown(
choices=["Cinematic", "Nature", "Urban", "Minimal", "Abstract"],
label="π¨ Visual Style",
value="Cinematic",
)
persona = gr.Dropdown(
choices=["Coach", "Philosopher", "Poet", "Mentor"],
label="π§ Persona (tone of the quote & commentary)",
value="Coach",
)
text_style = gr.Dropdown(
choices=["classic_center", "lower_third_serif", "typewriter_top"],
label="π Text Layout Style",
value="classic_center",
)
voice_profile = gr.Dropdown(
choices=[
"Calm Female (Rachel)",
"Warm Male (Adam)",
],
label="π Voice Profile (ElevenLabs)",
value="Calm Female (Rachel)",
)
num_variations = gr.Slider(
minimum=1,
maximum=3,
value=1,
step=1,
label="π¬ Number of Video Variations",
info="Generate multiple backgrounds for the same quote",
)
generate_btn = gr.Button(
"π€ Run Agent Pipeline",
variant="primary",
)
with gr.Column():
gr.Markdown("### π MCP Agent Activity Log")
output = gr.Textbox(
label="Agent Status",
lines=26,
show_label=False,
)
gr.Markdown("### β¨ Your Quote Videos & Caption")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
video1 = gr.Video(label="Video 1", height=420)
video2 = gr.Video(label="Video 2", height=420)
video3 = gr.Video(label="Video 3", height=420)
with gr.Column(scale=2):
caption_box = gr.Textbox(
label="π Caption + Hashtags + Posting Tip",
lines=14,
show_label=True,
interactive=False,
)
gr.Markdown(
"""
---
### π§© Under the hood
- Context engineering: niche + persona + trend theme
- Mini-RAG: curated trend knowledge feeding into generation
- Hybrid LLM: Gemini (quotes) + OpenAI (commentary & captions)
- Multimodal pipeline: text β audio β video β posting assets
"""
)
def process_and_display(
niche_val,
style_val,
persona_val,
text_style_val,
voice_profile_val,
num_variations_val,
):
status, videos, caption_block = mcp_agent_pipeline(
niche=niche_val,
style=style_val,
persona=persona_val,
text_style=text_style_val,
voice_profile=voice_profile_val,
num_variations=int(num_variations_val),
)
v1 = videos[0] if len(videos) > 0 else None
v2 = videos[1] if len(videos) > 1 else None
v3 = videos[2] if len(videos) > 2 else None
gallery_vids = load_gallery_videos()
g1 = gallery_vids[0] if len(gallery_vids) > 0 else None
g2 = gallery_vids[1] if len(gallery_vids) > 1 else None
g3 = gallery_vids[2] if len(gallery_vids) > 2 else None
g4 = gallery_vids[3] if len(gallery_vids) > 3 else None
g5 = gallery_vids[4] if len(gallery_vids) > 4 else None
g6 = gallery_vids[5] if len(gallery_vids) > 5 else None
return status, v1, v2, v3, caption_block, g1, g2, g3, g4, g5, g6
generate_btn.click(
process_and_display,
inputs=[
niche,
style,
persona,
text_style,
voice_profile,
num_variations,
],
outputs=[
output,
video1,
video2,
video3,
caption_box,
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
# Load gallery when app starts
def initial_gallery():
vids = load_gallery_videos()
vids += [None] * (6 - len(vids))
return vids[:6]
demo.load(
initial_gallery,
outputs=[
gallery_video1,
gallery_video2,
gallery_video3,
gallery_video4,
gallery_video5,
gallery_video6,
],
)
if __name__ == "__main__":
demo.launch(allowed_paths=["/data/gallery_videos"])
|