Spaces:
Running
Running
File size: 18,271 Bytes
3e435ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
#!/usr/bin/env python3
"""
Unified LLM Client - Single interface for all LLM providers
Handles Anthropic, SambaNova, and automatic fallback logic internally
"""
import os
import logging
import asyncio
import httpx
from typing import AsyncGenerator, List, Dict, Any, Optional, Tuple
from anthropic import AsyncAnthropic
from dotenv import load_dotenv
load_dotenv()
logger = logging.getLogger(__name__)
class UnifiedLLMClient:
"""
Unified client that abstracts all LLM provider logic.
Provides a single, clean interface to the application.
"""
def __init__(self):
"""Initialize the unified client with automatic provider selection"""
self.primary_client = None
self.fallback_router = None
self.provider_name = None
self.config = self._load_configuration()
self._initialize_providers()
def _load_configuration(self) -> Dict[str, Any]:
"""Load configuration from environment variables"""
return {
"anthropic_api_key": os.getenv("ANTHROPIC_API_KEY"),
"use_fallback": os.getenv("USE_FALLBACK_LLM", "false").lower() == "true",
"provider_preference": os.getenv("LLM_PROVIDER_PREFERENCE", "auto"),
"default_model": os.getenv("ANTHROPIC_MODEL", "claude-sonnet-4-5-20250929"),
"max_retries": int(os.getenv("LLM_MAX_RETRIES", "2")),
"is_hf_space": os.getenv("SPACE_ID") is not None,
"enable_smart_routing": os.getenv("ENABLE_SMART_ROUTING", "false").lower() == "true"
}
def _initialize_providers(self):
"""Initialize LLM providers based on configuration"""
# Try to initialize Anthropic first
if self.config["anthropic_api_key"]:
try:
self.primary_client = AsyncAnthropic(api_key=self.config["anthropic_api_key"])
self.provider_name = "Anthropic Claude"
logger.info("Anthropic client initialized successfully")
except Exception as e:
logger.warning(f"Failed to initialize Anthropic client: {e}")
self.primary_client = None
# Initialize fallback if needed
if self.config["use_fallback"] or not self.primary_client:
try:
from llm_providers import llm_router
self.fallback_router = llm_router
if not self.primary_client:
self.provider_name = "SambaNova Llama 3.3 70B"
logger.info("Using SambaNova as primary provider")
else:
logger.info("SambaNova fallback configured for automatic failover")
except ImportError:
logger.warning("Fallback LLM provider not available")
if not self.primary_client:
self._raise_configuration_error()
def _raise_configuration_error(self):
"""Raise appropriate error for missing configuration"""
if self.config["is_hf_space"]:
raise ValueError(
"🚨 No LLM provider configured!\n\n"
"Option 1: Add your Anthropic API key as a Space secret:\n"
"1. Go to your Space Settings\n"
"2. Add secret: ANTHROPIC_API_KEY = your_key\n\n"
"Option 2: Enable free SambaNova fallback:\n"
"Add secret: USE_FALLBACK_LLM = true"
)
else:
raise ValueError(
"No LLM provider configured.\n\n"
"Option 1: Add to .env file:\n"
"ANTHROPIC_API_KEY=your_api_key_here\n\n"
"Option 2: Enable free SambaNova:\n"
"USE_FALLBACK_LLM=true"
)
async def stream(
self,
messages: List[Dict],
tools: List[Dict] = None,
system_prompt: str = None,
model: str = None,
max_tokens: int = 8192,
temperature: float = 0.7
) -> AsyncGenerator[Tuple[str, List[Dict], str], None]:
"""
Stream responses from the LLM with automatic fallback.
This is the main interface - it handles all provider selection,
retries, and fallback logic internally.
Yields: (response_text, tool_calls, provider_used)
"""
# Use default model if not specified
if model is None:
model = self.config["default_model"]
# Track which provider we're using
provider_used = self.provider_name
# Determine provider order based on preference
use_anthropic_first = True
if self.config["provider_preference"] == "cost_optimize" and self.fallback_router:
# With cost_optimize, prefer SambaNova first
use_anthropic_first = False
# Apply smart routing if enabled
if self.config.get("enable_smart_routing", False) and self.primary_client and self.fallback_router:
# Extract the last user message for analysis
last_message = ""
for msg in reversed(messages):
if msg.get("role") == "user":
if isinstance(msg.get("content"), str):
last_message = msg["content"]
elif isinstance(msg.get("content"), list):
# Extract text from content blocks
for block in msg["content"]:
if isinstance(block, dict) and block.get("type") == "text":
last_message = block.get("text", "")
break
break
if last_message:
# Classify the query
query_type = self.classify_query_complexity(
last_message,
len(tools) if tools else 0
)
# Override provider preference based on classification
if query_type == "simple":
if use_anthropic_first:
logger.info(f"Smart routing: Directing simple query to Llama for cost savings: '{last_message[:80]}...'")
use_anthropic_first = False
elif query_type == "complex":
if not use_anthropic_first:
logger.info(f"Smart routing: Directing complex query to Claude for better quality: '{last_message[:80]}...'")
use_anthropic_first = True
# Try first provider based on preference
if use_anthropic_first and self.primary_client:
try:
async for result in self._stream_anthropic(
messages, tools, system_prompt, model, max_tokens, temperature
):
yield result
return # Success, exit
except Exception as e:
logger.warning(f"Primary provider failed: {e}")
# Fall through to fallback if available
if not self.fallback_router:
raise
# Try fallback provider
if self.fallback_router:
if not use_anthropic_first or not self.primary_client:
logger.info("Using SambaNova as primary provider (cost_optimize mode)" if not use_anthropic_first else "Using fallback LLM provider")
try:
# Override provider preference to force SambaNova when smart routing decided to use it
effective_preference = "cost_optimize" if not use_anthropic_first else self.config["provider_preference"]
async for text, tool_calls, provider in self.fallback_router.stream_with_fallback(
messages=messages,
tools=tools or [],
system_prompt=system_prompt,
model=model,
max_tokens=max_tokens,
provider_preference=effective_preference
):
yield (text, tool_calls, provider)
# If we used SambaNova first successfully with cost_optimize, we're done
if not use_anthropic_first:
return
except Exception as e:
if not use_anthropic_first and self.primary_client:
# SambaNova failed in cost_optimize mode, try Anthropic
logger.warning(f"SambaNova failed in cost_optimize mode: {e}, falling back to Anthropic")
try:
async for result in self._stream_anthropic(
messages, tools, system_prompt, model, max_tokens, temperature
):
yield result
return # Success, exit
except Exception as anthropic_error:
logger.error(f"All LLM providers failed: SambaNova: {e}, Anthropic: {anthropic_error}")
raise RuntimeError("All LLM providers failed. Please check configuration.")
else:
logger.error(f"All LLM providers failed: {e}")
raise RuntimeError("All LLM providers failed. Please check configuration.")
else:
raise RuntimeError("No LLM providers available")
async def _stream_anthropic(
self,
messages: List[Dict],
tools: List[Dict],
system_prompt: str,
model: str,
max_tokens: int,
temperature: float
) -> AsyncGenerator[Tuple[str, List[Dict], str], None]:
"""Stream from Anthropic with retry logic"""
retry_delay = 1
last_error = None
# Skip system message if it's in messages array
api_messages = messages[1:] if messages and messages[0].get("role") == "system" else messages
# Use system prompt or extract from messages
if not system_prompt and messages and messages[0].get("role") == "system":
system_prompt = messages[0].get("content", "")
for attempt in range(self.config["max_retries"] + 1):
try:
logger.info(f"Streaming from Anthropic (attempt {attempt + 1})")
accumulated_text = ""
tool_calls = []
# Create the stream
stream_params = {
"model": model,
"max_tokens": max_tokens,
"messages": api_messages,
"temperature": temperature
}
if system_prompt:
stream_params["system"] = system_prompt
if tools:
stream_params["tools"] = tools
async with self.primary_client.messages.stream(**stream_params) as stream:
async for event in stream:
if event.type == "content_block_start":
if event.content_block.type == "tool_use":
tool_calls.append({
"id": event.content_block.id,
"name": event.content_block.name,
"input": {}
})
elif event.type == "content_block_delta":
if event.delta.type == "text_delta":
accumulated_text += event.delta.text
yield (accumulated_text, tool_calls, "Anthropic Claude")
# Get final message
final_message = await stream.get_final_message()
# Rebuild tool calls from final message
tool_calls.clear()
for block in final_message.content:
if block.type == "tool_use":
tool_calls.append({
"id": block.id,
"name": block.name,
"input": block.input
})
elif block.type == "text" and block.text:
if block.text not in accumulated_text:
accumulated_text += block.text
yield (accumulated_text, tool_calls, "Anthropic Claude")
return # Success
except (httpx.RemoteProtocolError, httpx.ReadError) as e:
last_error = e
logger.warning(f"Network error on attempt {attempt + 1}: {e}")
if attempt < self.config["max_retries"]:
await asyncio.sleep(retry_delay)
retry_delay *= 2
else:
raise
except Exception as e:
logger.error(f"Anthropic streaming error: {e}")
raise
def get_status(self) -> Dict[str, Any]:
"""Get current client status and configuration"""
return {
"primary_provider": "Anthropic" if self.primary_client else None,
"fallback_enabled": bool(self.fallback_router),
"current_provider": self.provider_name,
"provider_preference": self.config["provider_preference"],
"max_retries": self.config["max_retries"]
}
def is_using_llama_primary(self) -> bool:
"""Check if Llama/SambaNova is the primary provider"""
# Check if cost_optimize preference is set and fallback is available
if self.config.get("provider_preference") == "cost_optimize" and self.fallback_router:
return True
# Check if we have no Anthropic client and are using SambaNova
if not self.primary_client and self.fallback_router:
return True
return False
def classify_query_complexity(self, message: str, tools_count: int = 0) -> str:
"""
Classify query as 'simple' or 'complex' based on content analysis.
Args:
message: The user's query text
tools_count: Number of tools available for this query
Returns:
'simple' | 'complex' - The query classification
"""
message_lower = message.lower()
# Simple query indicators (good for Llama)
simple_patterns = [
"what is", "define", "when was", "who is", "list of",
"how many", "name the", "what does", "explain what",
"is there", "are there", "can you list", "tell me about",
"what are the symptoms", "side effects of", "list the",
"symptoms of", "treatment for", "causes of"
]
# Complex query indicators (better for Claude)
complex_patterns = [
"analyze", "compare", "evaluate", "synthesize", "comprehensive",
"all", "every", "detailed", "mechanism", "pathophysiology",
"genotyping", "gene therapy", "combination therapy",
"latest research", "recent studies", "cutting-edge",
"molecular", "genetic mutation", "therapeutic pipeline",
"clinical trial results", "meta-analysis", "systematic review",
# Enhanced trial-related patterns
"trials", "clinical trials", "studies", "clinical study",
"NCT", "recruiting", "enrollment", "study protocol",
"phase 1", "phase 2", "phase 3", "phase 4", "early phase",
"investigational", "experimental", "novel treatment",
"treatment pipeline", "research pipeline", "drug development"
]
# Count pattern matches
simple_score = sum(1 for pattern in simple_patterns if pattern in message_lower)
complex_score = sum(1 for pattern in complex_patterns if pattern in message_lower)
# Decision logic
if complex_score > 0:
# Any complex indicator suggests complex query
return "complex"
elif simple_score > 0 and len(message) < 150:
# Simple pattern and short query
return "simple"
elif len(message) > 300:
# Long queries are likely complex
return "complex"
elif tools_count > 8:
# Many tools suggest complex analysis needed
return "complex"
else:
# Default to complex for safety (better quality)
return "complex" if self.primary_client else "simple"
def get_provider_display_name(self) -> str:
"""Get a user-friendly provider status string"""
if self.primary_client and self.fallback_router:
# Both providers available
if self.config["provider_preference"] == "cost_optimize":
status = "SambaNova Llama 3.3 70B (primary, cost-optimized) with Anthropic Claude fallback"
elif self.config["provider_preference"] == "quality_first":
status = "Anthropic Claude (primary, quality-first) with SambaNova fallback"
else: # auto
status = "Anthropic Claude (with SambaNova fallback)"
elif self.primary_client:
status = "Anthropic Claude"
elif self.fallback_router:
status = f"SambaNova Llama 3.3 70B ({self.config['provider_preference']} mode)"
else:
status = "Not configured"
return status
async def cleanup(self):
"""Clean up resources"""
if self.fallback_router:
try:
await self.fallback_router.cleanup()
except:
pass
async def __aenter__(self):
"""Async context manager entry"""
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit"""
await self.cleanup()
# Global instance (optional - can be created per request instead)
_global_client: Optional[UnifiedLLMClient] = None
def get_llm_client() -> UnifiedLLMClient:
"""Get or create the global LLM client instance"""
global _global_client
if _global_client is None:
_global_client = UnifiedLLMClient()
return _global_client
async def cleanup_global_client():
"""Clean up the global client instance"""
global _global_client
if _global_client:
await _global_client.cleanup()
_global_client = None |