File size: 18,051 Bytes
f833e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import gradio as gr
import requests
import json
import os
import warnings
from huggingface_hub import InferenceClient
# 抑制 asyncio 警告
warnings.filterwarnings('ignore', category=DeprecationWarning)
os.environ['PYTHONWARNINGS'] = 'ignore'
# 如果在 GPU 环境但不需要 GPU,禁用 CUDA
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# ========== MCP 工具简化定义(符合MCP协议标准) ==========
MCP_TOOLS = [
{"type": "function", "function": {"name": "advanced_search_company", "description": "Search US companies", "parameters": {"type": "object", "properties": {"company_input": {"type": "string"}}, "required": ["company_input"]}}},
{"type": "function", "function": {"name": "get_latest_financial_data", "description": "Get latest financial data", "parameters": {"type": "object", "properties": {"cik": {"type": "string"}}, "required": ["cik"]}}},
{"type": "function", "function": {"name": "extract_financial_metrics", "description": "Get multi-year trends", "parameters": {"type": "object", "properties": {"cik": {"type": "string"}, "years": {"type": "integer"}}, "required": ["cik", "years"]}}},
{"type": "function", "function": {"name": "get_quote", "description": "Get stock quote", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}},
{"type": "function", "function": {"name": "get_market_news", "description": "Get market news", "parameters": {"type": "object", "properties": {"category": {"type": "string"}}, "required": ["category"]}}},
{"type": "function", "function": {"name": "get_company_news", "description": "Get company news", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}, "from_date": {"type": "string"}, "to_date": {"type": "string"}}, "required": ["symbol"]}}}
]
# ========== MCP 服务配置 ==========
MCP_SERVICES = {
"financial": {"url": "http://localhost:7861/mcp", "type": "fastmcp"},
"market": {"url": "https://jc321-marketandstockmcp.hf.space", "type": "gradio"}
}
TOOL_ROUTING = {
"advanced_search_company": MCP_SERVICES["financial"],
"get_latest_financial_data": MCP_SERVICES["financial"],
"extract_financial_metrics": MCP_SERVICES["financial"],
"get_quote": MCP_SERVICES["market"],
"get_market_news": MCP_SERVICES["market"],
"get_company_news": MCP_SERVICES["market"]
}
# ========== 初始化 LLM 客户端 ==========
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
client = InferenceClient(api_key=hf_token) if hf_token else InferenceClient()
print(f"✅ LLM initialized: Qwen/Qwen3-32B:groq")
print(f"📊 MCP Services: {len(MCP_SERVICES)} services, {len(MCP_TOOLS)} tools")
# ========== Token 限制配置 ==========
# HuggingFace Inference API 实际限制约 8000-16000 tokens
# 为了安全,设置更低的限制
MAX_TOTAL_TOKENS = 6000 # 总上下文限制
MAX_TOOL_RESULT_CHARS = 1500 # 工具返回最大字符数 (增加到1500)
MAX_HISTORY_CHARS = 500 # 单条历史消息最大字符数
MAX_HISTORY_TURNS = 2 # 最大历史轮数
MAX_TOOL_ITERATIONS = 6 # 最大工具调用轮数 (增加到6,支持多工具调用)
MAX_OUTPUT_TOKENS = 2000 # 最大输出 tokens (增加到2000)
def estimate_tokens(text):
"""估算文本 token 数量(粗略:1 token ≈ 2 字符)"""
return len(str(text)) // 2
def truncate_text(text, max_chars, suffix="...[truncated]"):
"""截断文本到指定长度"""
text = str(text)
if len(text) <= max_chars:
return text
return text[:max_chars] + suffix
def get_system_prompt():
"""生成包含当前日期的系统提示词(精简版)"""
from datetime import datetime
current_date = datetime.now().strftime("%Y-%m-%d")
return f"""Financial analyst. Today: {current_date}. Use tools for company data, stock prices, news. Be concise."""
# ============================================================
# MCP 服务调用核心代码区
# 支持 FastMCP (JSON-RPC) 和 Gradio (SSE) 两种协议
# ============================================================
def call_mcp_tool(tool_name, arguments):
"""调用 MCP 工具"""
service_config = TOOL_ROUTING.get(tool_name)
if not service_config:
return {"error": f"Unknown tool: {tool_name}"}
try:
if service_config["type"] == "fastmcp":
return _call_fastmcp(service_config["url"], tool_name, arguments)
elif service_config["type"] == "gradio":
return _call_gradio_api(service_config["url"], tool_name, arguments)
else:
return {"error": "Unknown service type"}
except Exception as e:
return {"error": str(e)}
def _call_fastmcp(service_url, tool_name, arguments):
"""FastMCP: 标准 MCP JSON-RPC"""
response = requests.post(
service_url,
json={"jsonrpc": "2.0", "method": "tools/call", "params": {"name": tool_name, "arguments": arguments}, "id": 1},
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code != 200:
return {"error": f"HTTP {response.status_code}"}
data = response.json()
# 解包 MCP 协议: jsonrpc -> result -> content[0].text -> JSON
if isinstance(data, dict) and "result" in data:
result = data["result"]
if isinstance(result, dict) and "content" in result:
content = result["content"]
if isinstance(content, list) and len(content) > 0:
first_item = content[0]
if isinstance(first_item, dict) and "text" in first_item:
try:
return json.loads(first_item["text"])
except (json.JSONDecodeError, TypeError):
return {"text": first_item["text"]}
return result
return data
def _call_gradio_api(service_url, tool_name, arguments):
"""Gradio: SSE 流式协议"""
tool_map = {"get_quote": "test_quote_tool", "get_market_news": "test_market_news_tool", "get_company_news": "test_company_news_tool"}
gradio_fn = tool_map.get(tool_name)
if not gradio_fn:
return {"error": "No mapping"}
# 构造参数
if tool_name == "get_quote":
params = [arguments.get("symbol", "")]
elif tool_name == "get_market_news":
params = [arguments.get("category", "general")]
elif tool_name == "get_company_news":
params = [arguments.get("symbol", ""), arguments.get("from_date", ""), arguments.get("to_date", "")]
else:
params = []
# 提交请求
call_url = f"{service_url}/call/{gradio_fn}"
resp = requests.post(call_url, json={"data": params}, timeout=10)
if resp.status_code != 200:
return {"error": f"HTTP {resp.status_code}"}
event_id = resp.json().get("event_id")
if not event_id:
return {"error": "No event_id"}
# 获取结果 (SSE)
result_resp = requests.get(f"{call_url}/{event_id}", stream=True, timeout=20)
if result_resp.status_code != 200:
return {"error": f"HTTP {result_resp.status_code}"}
# 解析 SSE
for line in result_resp.iter_lines():
if line and line.decode('utf-8').startswith('data: '):
try:
result_data = json.loads(line.decode('utf-8')[6:])
if isinstance(result_data, list) and len(result_data) > 0:
return {"text": result_data[0]}
except json.JSONDecodeError:
continue
return {"error": "No result"}
# ============================================================
# End of MCP 服务调用代码区
# ============================================================
def chatbot_response(message, history):
"""AI 助手主函数(流式输出,性能优化)"""
try:
messages = [{"role": "system", "content": get_system_prompt()}]
# 添加历史(最近2轮) - 严格限制上下文长度
if history:
for item in history[-MAX_HISTORY_TURNS:]:
if isinstance(item, (list, tuple)) and len(item) == 2:
# 用户消息(不截断)
messages.append({"role": "user", "content": item[0]})
# 助手回复(严格截断)
assistant_msg = str(item[1])
if len(assistant_msg) > MAX_HISTORY_CHARS:
assistant_msg = truncate_text(assistant_msg, MAX_HISTORY_CHARS)
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
tool_calls_log = []
# LLM 调用循环(支持多轮工具调用)
final_response_content = None
for iteration in range(MAX_TOOL_ITERATIONS):
response = client.chat.completions.create(
model="Qwen/Qwen3-32B:groq",
messages=messages,
tools=MCP_TOOLS,
max_tokens=MAX_OUTPUT_TOKENS,
temperature=0.5,
tool_choice="auto",
stream=False
)
choice = response.choices[0]
if choice.message.tool_calls:
messages.append(choice.message)
for tool_call in choice.message.tool_calls:
tool_name = tool_call.function.name
try:
tool_args = json.loads(tool_call.function.arguments)
except json.JSONDecodeError:
tool_args = {}
# 调用 MCP 工具
tool_result = call_mcp_tool(tool_name, tool_args)
# 检查错误
if isinstance(tool_result, dict) and "error" in tool_result:
# 工具调用失败,记录错误
tool_calls_log.append({"name": tool_name, "arguments": tool_args, "result": tool_result, "error": True})
result_for_llm = json.dumps({"error": tool_result.get("error", "Unknown error")}, ensure_ascii=False)
else:
# 限制返回结果大小
result_str = json.dumps(tool_result, ensure_ascii=False)
if len(result_str) > MAX_TOOL_RESULT_CHARS:
if isinstance(tool_result, dict) and "text" in tool_result:
truncated_text = truncate_text(tool_result["text"], MAX_TOOL_RESULT_CHARS - 50)
tool_result_truncated = {"text": truncated_text, "_truncated": True}
elif isinstance(tool_result, dict):
truncated = {}
char_count = 0
for k, v in list(tool_result.items())[:8]: # 保留前8个字段
v_str = str(v)[:300] # 每个值最多300字符
truncated[k] = v_str
char_count += len(k) + len(v_str)
if char_count > MAX_TOOL_RESULT_CHARS:
break
tool_result_truncated = {**truncated, "_truncated": True}
else:
tool_result_truncated = {"preview": truncate_text(result_str, MAX_TOOL_RESULT_CHARS), "_truncated": True}
result_for_llm = json.dumps(tool_result_truncated, ensure_ascii=False)
else:
result_for_llm = result_str
# 记录成功的工具调用
tool_calls_log.append({"name": tool_name, "arguments": tool_args, "result": tool_result})
messages.append({
"role": "tool",
"name": tool_name,
"content": result_for_llm,
"tool_call_id": tool_call.id
})
continue
else:
# 没有更多工具调用,保存最终答案
final_response_content = choice.message.content
break
# 构建响应前缀(简化版)
response_prefix = ""
# 显示工具调用(使用原生HTML details标签)
if tool_calls_log:
response_prefix += """<div style='margin-bottom: 15px;'>
<div style='background: #f0f0f0; padding: 8px 12px; border-radius: 6px; font-weight: 600; color: #333;'>
🛠️ Tools Used ({} calls)
</div>
""".format(len(tool_calls_log))
for idx, tool_call in enumerate(tool_calls_log):
# 预先计算 JSON 字符串,避免重复调用
args_json = json.dumps(tool_call['arguments'], ensure_ascii=False)
result_json = json.dumps(tool_call.get('result', {}), ensure_ascii=False, indent=2)
result_preview = result_json[:1500] + ('...' if len(result_json) > 1500 else '')
# 显示错误状态
error_indicator = " ❌ Error" if tool_call.get('error') else ""
# 使用原生 HTML5 details/summary 标签(不需要 JavaScript)
response_prefix += f"""<details style='margin: 8px 0; border: 1px solid #ddd; border-radius: 6px; overflow: hidden;'>
<summary style='background: #fff; padding: 10px; cursor: pointer; user-select: none; list-style: none;'>
<div style='display: flex; justify-content: space-between; align-items: center;'>
<div style='flex: 1;'>
<strong style='color: #2c5aa0;'>📌 {idx+1}. {tool_call['name']}{error_indicator}</strong>
<div style='font-size: 0.85em; color: #666; margin-top: 4px;'>📥 Input: <code style='background: #f5f5f5; padding: 2px 6px; border-radius: 3px;'>{args_json}</code></div>
</div>
<span style='font-size: 1.2em; color: #999; margin-left: 10px;'>▶</span>
</div>
</summary>
<div style='background: #f9f9f9; padding: 12px; border-top: 1px solid #eee;'>
<div style='font-size: 0.9em; color: #333;'>
<strong>📤 Output:</strong>
<pre style='background: #fff; padding: 10px; border-radius: 4px; overflow-x: auto; margin-top: 6px; font-size: 0.85em; border: 1px solid #e0e0e0; max-height: 400px; white-space: pre-wrap;'>{result_preview}</pre>
</div>
</div>
</details>
"""
response_prefix += """</div>
---
"""
response_prefix += "\n"
# 流式输出最终答案
yield response_prefix
# 如果已经有最终答案,直接输出
if final_response_content:
# 已经从循环中获得了最终答案,直接输出
yield response_prefix + final_response_content
else:
# 如果循环结束但没有最终答案(达到最大迭代次数),需要再调用一次让模型总结
try:
stream = client.chat.completions.create(
model="Qwen/Qwen3-32B:groq",
messages=messages,
tools=None, # 不再允许调用工具
max_tokens=MAX_OUTPUT_TOKENS,
temperature=0.5,
stream=True
)
accumulated_text = ""
for chunk in stream:
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content:
accumulated_text += chunk.choices[0].delta.content
yield response_prefix + accumulated_text
except Exception as stream_error:
# 流式输出失败,尝试非流式
final_resp = client.chat.completions.create(
model="Qwen/Qwen3-32B:groq",
messages=messages,
tools=None,
max_tokens=MAX_OUTPUT_TOKENS,
temperature=0.5,
stream=False
)
yield response_prefix + final_resp.choices[0].message.content
except Exception as e:
import traceback
error_detail = str(e)
if "500" in error_detail:
yield f"❌ Error: 模型服务器错误。可能是数据太大或请求超时。\n\n详细信息: {error_detail[:200]}"
else:
yield f"❌ Error: {error_detail}\n\n{traceback.format_exc()[:500]}"
# ========== Gradio 界面(极简版)==========
with gr.Blocks(title="Financial AI Assistant") as demo:
gr.Markdown("# 💬 Financial AI Assistant")
chat = gr.ChatInterface(
fn=chatbot_response,
examples=[
"What's Apple's latest revenue and profit?",
"Show me NVIDIA's 3-year financial trends",
"How is Tesla's stock performing today?",
"Get the latest market news about crypto",
"Compare Microsoft's latest earnings with its current stock price",
],
chatbot=gr.Chatbot(height=700),
textbox=gr.Textbox(lines=4, placeholder="Ask me anything about finance, stocks, or company data...", show_label=False),
)
# 启动应用
if __name__ == "__main__":
import sys
# 修复 asyncio 事件循环问题
if sys.platform == 'linux':
try:
import asyncio
asyncio.set_event_loop_policy(asyncio.DefaultEventLoopPolicy())
except:
pass
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
ssr_mode=False,
quiet=False
)
|