File size: 41,840 Bytes
716f1cd
 
 
 
 
 
 
 
f833e71
 
 
 
 
 
 
860057a
f833e71
 
 
 
 
716f1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f833e71
 
 
716f1cd
 
 
 
 
 
 
 
 
 
 
 
 
8f0908c
 
 
716f1cd
 
8f0908c
716f1cd
 
8f0908c
716f1cd
 
 
8f0908c
 
716f1cd
 
 
 
 
8f0908c
 
716f1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f0908c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e07add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
2e07add
860057a
2e07add
860057a
 
2e07add
 
 
 
860057a
2e07add
 
 
 
 
8b4aafa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a40e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4aafa
 
 
 
 
0a40e21
 
8b4aafa
0a40e21
 
 
 
8b4aafa
 
 
 
2e07add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716f1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
 
 
 
 
 
 
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1b995
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716f1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f833e71
 
716f1cd
 
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716f1cd
 
f833e71
 
 
 
 
 
 
 
 
 
 
860057a
f833e71
 
860057a
f833e71
860057a
 
 
 
 
 
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
860057a
f833e71
860057a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f833e71
860057a
f833e71
860057a
 
 
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f833e71
5eb0763
860057a
 
 
 
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
 
 
 
 
 
f833e71
 
 
 
 
 
 
 
860057a
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
860057a
f833e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
"""
Financial AI Assistant - Direct Method Library (不依赖 HTTP)
直接导入并调用 easy_financial_mcp.py 中的函数
支持本地和 HF Space 部署
"""

import sys
from pathlib import Path
import os
import json
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
import requests
import warnings

# 抑削 asyncio 警告
warnings.filterwarnings('ignore', category=DeprecationWarning)
os.environ['PYTHONWARNINGS'] = 'ignore'

# 先加载 .env 文件
load_dotenv()

# 添加服务模块路径
PROJECT_ROOT = Path(__file__).parent.parent.absolute()
sys.path.insert(0, str(PROJECT_ROOT))

# 直接导入 MCP 中定义的函数
try:
    from EasyFinancialAgent.easy_financial_mcp import (
        search_company as _search_company,
        get_company_info as _get_company_info,
        get_company_filings as _get_company_filings,
        get_financial_data as _get_financial_data,
        extract_financial_metrics as _extract_financial_metrics,
        get_latest_financial_data as _get_latest_financial_data,
        advanced_search_company as _advanced_search_company
    )
    MCP_DIRECT_AVAILABLE = True
    print("[FinancialAI] ✓ Direct MCP functions imported successfully")
except ImportError as e:
    MCP_DIRECT_AVAILABLE = False
    print(f"[FinancialAI] ✗ Failed to import MCP functions: {e}")
    # 定义占位符函数
    def _advanced_search_company(x):
        return {"error": "MCP not available"}
    def _get_company_info(x):
        return {"error": "MCP not available"}
    def _get_company_filings(x, y=None):
        return {"error": "MCP not available"}
    def _get_financial_data(x, y):
        return {"error": "MCP not available"}
    def _get_latest_financial_data(x):
        return {"error": "MCP not available"}
    def _extract_financial_metrics(x, y=3):
        return {"error": "MCP not available"}


# ============================================================
# 便捷方法 - 公司搜索相关
# ============================================================

def search_company_direct(company_input):
    """
    批量搜索公司信息(直接调用)
    
    使用 advanced_search_company 工具,支持公司名称、Ticker 或 CIK 代码
    
    Args:
        company_input: 公司名称、Ticker 代码或 CIK 代码
    
    Returns:
        批量搜索结果
    
    Example:
        result = search_company_direct("Apple")
        result = search_company_direct("AAPL")
        result = search_company_direct("0000320193")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        result = _advanced_search_company(company_input)
        return [result]
    except Exception as e:
        return {"error": str(e)}


def get_company_info_direct(cik):
    """
    获取公司详细信息(直接调用)
    
    Args:
        cik: 公司 CIK 代码
    
    Returns:
        公司信息
    
    Example:
        result = get_company_info_direct("0000320193")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _get_company_info(cik)
    except Exception as e:
        return {"error": str(e)}


def get_company_filings_direct(cik):
    """
    获取公司 SEC 文件列表(直接调用)
    
    Args:
        cik: 公司 CIK 代码
    
    Returns:
        文件列表
    
    Example:
        result = get_company_filings_direct("0000320193")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _get_company_filings(cik)
    except Exception as e:
        return {"error": str(e)}


def advanced_search_company_detailed(company_input):
    """
    高级公司搜索 - 支持公司名称、Ticker 或 CIK 的强大搜索方法
    
    不同于 search_company_direct,该方法来自 EasyReportDataMCP 中的 mcp_server_fastmcp
    更具有灵活性,可以自动检测输入的类型
    
    Args:
        company_input: 公司名称 ("Tesla", "Apple Inc")
                      Ticker 代码 ("TSLA", "AAPL", "MSFT")
                      CIK 代码 ("0001318605", "0000320193")
    
    Returns:
        dict: 包含以下信息:
            - cik: 公司的 Central Index Key
            - name: 办公室注册名称
            - tickers: 股票代码
            - sic: Standard Industrial Classification 代码
            - sic_description: 行业/行业描述
    
    Example:
        # 按公司名称搜索
        result = advanced_search_company_detailed("Tesla")
        # 按 Ticker 搜索
        result = advanced_search_company_detailed("TSLA")
        # 按 CIK 搜索
        result = advanced_search_company_detailed("0001318605")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        # 直接调用 advanced_search_company 工具
        result = _advanced_search_company(company_input)
        return result
    except Exception as e:
        import traceback
        return {
            "error": str(e),
            "traceback": traceback.format_exc()
        }


def format_search_result(search_result):
    """
    提取并格式化搜索结果
    
    将 advanced_search_company 的结果转换为标准格式:
    [{company_name: str, cik: str, ticker: str}]
    
    Args:
        search_result: advanced_search_company 的返回结果
                      格式: {'cik': '...', 'name': '...', 'tickers': [...], ...}
    
    Returns:
        list[dict]: 格式化的结果
                    [
                        {
                            'company_name': str,  # 公司名称
                            'cik': str,           # CIK 代码
                            'ticker': str         # 第一个股票代码
                        }
                    ]
    
    Example:
        search_result = {'cik': '0001577552', 'name': 'Alibaba Group Holding Ltd', 'tickers': ['BABA'], '_source': 'company_tickers_cache'}
        formatted = format_search_result(search_result)
        # 输出: [{'company_name': 'Alibaba Group Holding Ltd', 'cik': '0001577552', 'ticker': 'BABA'}]
    """
    # 处理错误情况
    if isinstance(search_result, dict) and 'error' in search_result:
        return []
    
    # 处理列表情况
    if isinstance(search_result, list):
        formatted_list = []
        for item in search_result:
            formatted_item = format_search_result(item)
            formatted_list.extend(formatted_item)
        return formatted_list
    
    # 处理单个字典
    if not isinstance(search_result, dict):
        return []
    
    try:
        company_name = search_result.get('name', '')
        cik = search_result.get('cik', '')
        tickers = search_result.get('tickers', [])
        
        # 取数组的第一个元素,或使用空字符串
        ticker = tickers[0] if isinstance(tickers, list) and len(tickers) > 0 else ''
        
        return [{
            'company_name': company_name,
            'cik': cik,
            'ticker': ticker
        }]
    except Exception as e:
        return []


def format_search_result_for_display(search_result):
    """
    格式化搜索结果为显示用的字符串列表
    
    Args:
        search_result: advanced_search_company 的返回结果
    
    Returns:
        list[str]: 格式化的字符串列表 ["公司名 (Ticker)"]
    
    Example:
        result = format_search_result_for_display({'cik': '0001577552', 'name': 'Alibaba Group', 'tickers': ['BABA']})
        # 输出: ['Alibaba Group (BABA)']
    """
    formatted_data = format_search_result(search_result)
    
    # ✅ 更稳健的美股主要代码判断逻辑
    def is_main_us_ticker(ticker):
        if not ticker:
            return False
        
        ticker = ticker.upper().strip()
        
        # 处理包含点号的情况(如 BRK.B)
        ticker_clean = ticker.replace('.', '')
        
        # 判断规则:
        # 1. 6+字母基本是OTC或基金 - 拒绝
        if len(ticker_clean) > 5:
            return False
        
        # 2. 5个字母且以特定后缀结尾 - 拒绝常见OTC/权证/单位后缀
        if len(ticker_clean) == 5 and ticker_clean.endswith(('F', 'Y', 'Q', 'D', 'W', 'U', 'P')):
            return False
        
        # 3. 其他情况接受(包括 GOOGL, BABA, BRK.B 等)
        return True
    
    display_list = []
    for item in formatted_data:
        company_name = item.get('company_name', 'Unknown')
        ticker = item.get('ticker', '')
        
        # ✅ 只显示主要美股代码
        if ticker and is_main_us_ticker(ticker):
            display_text = f"{company_name} ({ticker})"
            display_list.append(display_text)
        elif not ticker:
            # 如果没有ticker,也显示公司名
            display_list.append(company_name)
    
    return display_list


def search_and_format(company_input):
    """
    搎合搜索并立即格式化结果
    
    一个一步到位的便法方法,执行搜索并格式化结果
    
    Args:
        company_input: 公司名称、Ticker 或 CIK
    
    Returns:
        list[dict]: 格式化的结果
    
    Example:
        result = search_and_format('BABA')
        # 输出: [{'company_name': 'Alibaba Group Holding Ltd', 'cik': '0001577552', 'ticker': 'BABA'}]
    """
    # 执行搜索
    search_result = advanced_search_company_detailed(company_input)
    
    # 检查是否有错误
    if isinstance(search_result, dict) and 'error' in search_result:
        return []
    
    # 格式化结果
    return format_search_result(search_result)


# ============================================================
# 便捷方法 - 财务数据相关
# ============================================================

def get_latest_financial_data_direct(cik):
    """
    获取公司最新财务数据(直接调用)
    
    Args:
        cik: 公司 CIK 代码
    
    Returns:
        最新财务数据
    
    Example:
        result = get_latest_financial_data_direct("0000320193")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _get_latest_financial_data(cik)
    except Exception as e:
        return {"error": str(e)}


def extract_financial_metrics_direct(cik, years=5):
    """
    提取多年财务指标趋势(直接调用)
    
    Args:
        cik: 公司 CIK 代码
        years: 年数(默认 3 年)
    
    Returns:
        财务指标数据
    
    Example:
        result = extract_financial_metrics_direct("0000320193", years=5)
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _extract_financial_metrics(cik, years)
    except Exception as e:
        return {"error": str(e)}


# ============================================================
# 高级方法 - 综合查询
# ============================================================

def query_company_direct(company_input, get_filings=True, get_metrics=True):
    """
    综合查询公司信息(直接调用)
    包括搜索、基本信息、文件列表和财务指标
    
    Args:
        company_input: 公司名称或代码
        get_filings: 是否获取文件列表
        get_metrics: 是否获取财务指标
    
    Returns:
        综合结果字典,包含 search, company_info, filings, metrics
    
    Example:
        result = query_company_direct("Apple", get_filings=True, get_metrics=True)
    """
    from datetime import datetime
    
    result = {
        "timestamp": datetime.now().isoformat(),
        "query_input": company_input,
        "status": "success",
        "data": {
            "company_search": None,
            "company_info": None,
            "filings": None,
            "metrics": None
        },
        "errors": []
    }
    
    if not MCP_DIRECT_AVAILABLE:
        result["status"] = "error"
        result["errors"].append("MCP functions not available")
        return result
    
    try:
        # 1. 搜索公司
        search_result = search_company_direct(company_input)
        if "error" in search_result:
            result["errors"].append(f"Search error: {search_result['error']}")
            result["status"] = "error"
            return result
        
        result["data"]["company_search"] = search_result
        
        # 从搜索结果提取 CIK
        cik = None
        if isinstance(search_result, dict):
            cik = search_result.get("cik")
        elif isinstance(search_result, (list, tuple)) and len(search_result) > 0:
            # 从列表中获取第一个元素
            try:
                first_item = search_result[0] if isinstance(search_result, (list, tuple)) else None
                if isinstance(first_item, dict):
                    cik = first_item.get("cik")
            except (IndexError, TypeError):
                pass
        
        if not cik:
            result["errors"].append("Could not extract CIK from search result")
            result["status"] = "error"
            return result
        
        # 2. 获取公司信息
        company_info = get_company_info_direct(cik)
        if "error" not in company_info:
            result["data"]["company_info"] = company_info
        else:
            result["errors"].append(f"Failed to get company info: {company_info.get('error')}")
        
        # 3. 获取文件列表
        if get_filings:
            filings = get_company_filings_direct(cik)
            if "error" not in filings:
                result["data"]["filings"] = filings
            else:
                result["errors"].append(f"Failed to get filings: {filings.get('error')}")
        
        # 4. 获取财务指标
        if get_metrics:
            metrics = extract_financial_metrics_direct(cik, years=3)
            if "error" not in metrics:
                result["data"]["metrics"] = metrics
            else:
                result["errors"].append(f"Failed to get metrics: {metrics.get('error')}")
        
    except Exception as e:
        result["status"] = "error"
        result["errors"].append(f"Exception: {str(e)}")
        import traceback
        result["errors"].append(traceback.format_exc())
    
    return result


# ============================================================
# LLM 模型配置与初始化
# ============================================================

# 初始化 LLM 客户端
def _init_llm_client():
    """初始化 LLM 客户端"""
    global llm_client
    hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
    llm_client = None
    try:
        if hf_token:
            llm_client = InferenceClient(api_key=hf_token)
            print("[FinancialAI] ✓ LLM client initialized with HF_TOKEN")
            return True
        else:
            print("[FinancialAI] ⚠ Warning: HF_TOKEN not found, LLM features disabled")
            return False
    except Exception as e:
        print(f"[FinancialAI] ✗ Failed to initialize LLM client: {e}")
        return False

# 全局 llm_client 变量
llm_client = None
_init_llm_client()


def get_system_prompt():
    """生成系统提示词"""
    from datetime import datetime
    current_date = datetime.now().strftime("%Y-%m-%d")
    return f"""You are a financial analysis expert. Today is {current_date}.
Your role:
- Analyze company financial data, reports, and market news
- Provide investment insights based on factual data
- Be concise, objective, and data-driven
- Always include disclaimers about market risks

⚠️ IMPORTANT: You have a maximum of 5 tool calls. Choose the MOST RELEVANT tools carefully:
- Use 'advanced_search_company' ONLY if you need to find a company's CIK
- Use 'extract_financial_metrics' for comprehensive multi-year financial analysis (RECOMMENDED for most queries)
- Use 'get_latest_financial_data' for quick recent snapshot
- Use 'get_quote' for real-time stock price
- Use 'get_company_news' for company-specific news
- Use 'get_market_news' for general market trends

Prioritize the most important tools for the user's question. Avoid redundant calls.
Output should be in English."""


def analyze_company_with_llm(company_input, analysis_type="summary"):
    """
    使用 LLM 分析公司信息
    
    Args:
        company_input: 公司名称或代码
        analysis_type: 分析类型 ("summary", "investment", "risks")
    
    Returns:
        LLM 分析结果
    
    Example:
        result = analyze_company_with_llm("Apple", "investment")
    """
    if not llm_client:
        return {"error": "LLM client not available"}
    
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        # 先获取公司财务数据
        company_data = get_company_summary_direct(company_input)
        if company_data["status"] == "error":
            return {"error": f"Failed to fetch company data: {company_data['errors']}"}
        
        # 构建提示
        data_str = json.dumps(company_data["data"], ensure_ascii=False, indent=2)
        
        if analysis_type == "investment":
            prompt = f"""
Based on the following company financial data, provide an investment recommendation:

{data_str}

Provide:
1. Investment Recommendation (Buy/Hold/Sell)
2. Key Strengths and Weaknesses
3. Price Target Range
4. Risk Assessment
5. Risk Disclaimer
"""
        elif analysis_type == "risks":
            prompt = f"""
Based on the following company data, analyze the key risks:

{data_str}

Identify:
1. Financial Risks
2. Market Risks
3. Operational Risks
4. Mitigation Strategies
5. Risk Disclaimer
"""
        else:  # summary
            prompt = f"""
Provide a financial summary of the following company:

{data_str}

Include:
1. Company Overview
2. Financial Health
3. Recent Performance
4. Investment Outlook
"""
        
        # 调用 LLM
        response = llm_client.chat.completions.create(
            model="Qwen/Qwen2.5-72B-Instruct",
            messages=[
                {"role": "system", "content": get_system_prompt()},
                {"role": "user", "content": prompt}
            ],
            max_tokens=1500,
            temperature=0.7,
            top_p=0.95,
            stream=False
        )
        
        return {
            "company": company_input,
            "analysis_type": analysis_type,
            "analysis": response.choices[0].message.content,
            "data_used": company_data["data"]
        }
    
    except Exception as e:
        return {"error": f"LLM analysis failed: {str(e)}"}


# ============================================================
# 便捷方法 - 获取单一时期财务数据
# ============================================================

def get_financial_data_direct(cik, period):
    """
    获取指定时期的财务数据(直接调用)
    
    Args:
        cik: 公司 CIK 代码
        period: 时期 (e.g., "2024", "2024Q3")
    
    Returns:
        财务数据
    
    Example:
        result = get_financial_data_direct("0000320193", "2024")
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _get_financial_data(cik, period)
    except Exception as e:
        return {"error": str(e)}


# ============================================================
# 便捷方法 - 获取文件列表
# ============================================================

def get_company_filings_with_form_direct(cik, form_types=None):
    """
    获取指定类型的公司 SEC 文件列表(直接调用)
    
    Args:
        cik: 公司 CIK 代码
        form_types: 表单类型列表 (e.g., ["10-K", "10-Q"])
    
    Returns:
        文件列表
    
    Example:
        result = get_company_filings_with_form_direct("0000320193", ["10-K"])
    """
    if not MCP_DIRECT_AVAILABLE:
        return {"error": "MCP functions not available"}
    
    try:
        return _get_company_filings(cik, form_types)
    except Exception as e:
        return {"error": str(e)}


# ============================================================
# 便捷方法 - 轻量级查询
# ============================================================

def get_company_summary_direct(company_input):
    """
    获取公司简要摘要信息(轻量级查询,仅搜索和基本信息)
    
    Args:
        company_input: 公司名称或代码
    
    Returns:
        公司摘要数据
    
    Example:
        result = get_company_summary_direct("Apple")
    """
    from datetime import datetime
    
    result = {
        "timestamp": datetime.now().isoformat(),
        "query_input": company_input,
        "status": "success",
        "data": {
            "company_search": None,
            "company_info": None
        },
        "errors": []
    }
    
    if not MCP_DIRECT_AVAILABLE:
        result["status"] = "error"
        result["errors"].append("MCP functions not available")
        return result
    
    try:
        # 1. 搜索公司
        search_result = search_company_direct(company_input)
        if "error" in search_result:
            result["errors"].append(f"Search error: {search_result['error']}")
            result["status"] = "error"
            return result
        
        result["data"]["company_search"] = search_result
        
        # 从搜索结果提取 CIK
        cik = None
        if isinstance(search_result, dict):
            cik = search_result.get("cik")
        elif isinstance(search_result, (list, tuple)) and len(search_result) > 0:
            try:
                first_item = search_result[0]
                if isinstance(first_item, dict):
                    cik = first_item.get("cik")
            except (IndexError, TypeError):
                pass
        
        if not cik:
            result["errors"].append("Could not extract CIK from search result")
            result["status"] = "error"
            return result
        
        # 2. 获取公司信息
        company_info = get_company_info_direct(cik)
        if "error" not in company_info:
            result["data"]["company_info"] = company_info
        else:
            result["errors"].append(f"Failed to get company info: {company_info.get('error')}")
        
    except Exception as e:
        result["status"] = "error"
        result["errors"].append(f"Exception: {str(e)}")
        import traceback
        result["errors"].append(traceback.format_exc())
    
    return result


def get_financial_metrics_only_direct(company_input, years=5):
    """
    获取公司财务指标趋势(仅财务指标,不获取文件列表)
    
    Args:
        company_input: 公司名称或代码
        years: 年数(默认 5 年)
    
    Returns:
        财务指标数据
    
    Example:
        result = get_financial_metrics_only_direct("Apple", years=5)
    """
    from datetime import datetime
    
    result = {
        "timestamp": datetime.now().isoformat(),
        "query_input": company_input,
        "years": years,
        "status": "success",
        "data": None,
        "errors": []
    }
    
    if not MCP_DIRECT_AVAILABLE:
        result["status"] = "error"
        result["errors"].append("MCP functions not available")
        return result
    
    try:
        # 1. 搜索公司
        search_result = search_company_direct(company_input)
        if "error" in search_result:
            result["errors"].append(f"Search error: {search_result['error']}")
            result["status"] = "error"
            return result
        
        # 从搜索结果提取 CIK
        cik = None
        if isinstance(search_result, dict):
            cik = search_result.get("cik")
        elif isinstance(search_result, (list, tuple)) and len(search_result) > 0:
            try:
                first_item = search_result[0]
                if isinstance(first_item, dict):
                    cik = first_item.get("cik")
            except (IndexError, TypeError):
                pass
        
        if not cik:
            result["errors"].append("Could not extract CIK from search result")
            result["status"] = "error"
            return result
        
        # 2. 获取财务指标
        metrics = extract_financial_metrics_direct(cik, years=years)
        if "error" in metrics:
            result["errors"].append(f"Failed to get metrics: {metrics['error']}")
            result["status"] = "error"
        else:
            result["data"] = metrics
        
    except Exception as e:
        result["status"] = "error"
        result["errors"].append(f"Exception: {str(e)}")
        import traceback
        result["errors"].append(traceback.format_exc())
    
    return result


# ============================================================
# 测试函数
# ============================================================

if __name__ == "__main__":
    print("\n" + "="*60)
    print("Financial AI Assistant - Direct Method Test")
    print("="*60)
    
    # 测试 1: 公司搜索
    print("\n1. 搜索公司 (Apple)...")
    result = search_company_direct("Apple")
    print(f"   结果: {result}")
    
    # 测试 2: 公司摘要
    print("\n2. 获取公司摘要信息 (Tesla)...")
    summary = get_company_summary_direct("Tesla")
    print(f"   状态: {summary['status']}")
    print(f"   数据: {summary['data']}")
    print(f"   错误: {summary['errors']}")
    
    # 测试 3: 财务指标
    print("\n3. 获取财务指标 (Microsoft)...")
    metrics = get_financial_metrics_only_direct("Microsoft", years=3)
    print(f"   状态: {metrics['status']}")
    if metrics['status'] == 'success':
        print(f"   指标数据: {metrics['data']}")
    else:
        print(f"   错误: {metrics['errors']}")
    
    # 测试 4: 完整查询
    print("\n4. 获取 Amazon 完整信息...")
    full_query = query_company_direct("Amazon", get_filings=True, get_metrics=True)
    print(f"   状态: {full_query['status']}")
    print(f"   错误: {full_query['errors']}")
    
    # 测试 5: LLM 分析 - 摘要
    print("\n5. LLM 分析 - 公司摘要(Google)...")
    if llm_client:
        llm_result = analyze_company_with_llm("Google", "summary")
        if "error" in llm_result:
            print(f"   错误: {llm_result['error']}")
        else:
            print(f"   分析结果: {llm_result['analysis'][:200]}...")
    else:
        print("   LLM 客户端不可用")
    
    # 测试 6: LLM 分析 - 投资建议
    print("\n6. LLM 分析 - 投资建议(NVIDIA)...")
    if llm_client:
        llm_result = analyze_company_with_llm("NVIDIA", "investment")
        if "error" in llm_result:
            print(f"   错误: {llm_result['error']}")
        else:
            print(f"   分析结果: {llm_result['analysis'][:200]}...")
    else:
        print("   LLM 客户端不可用")
    
    # 测试 7: LLM 分析 - 风险评估
    print("\n7. LLM 分析 - 风险评估(Meta)...")
    if llm_client:
        llm_result = analyze_company_with_llm("Meta", "risks")
        if "error" in llm_result:
            print(f"   错误: {llm_result['error']}")
        else:
            print(f"   分析结果: {llm_result['analysis'][:200]}...")
    else:
        print("   LLM 客户端不可用")
    
    print("\n" + "="*60)


# ============================================================
# 完整对话引擎 - chatbot_response
# ============================================================

# Token 限制配置
MAX_TOTAL_TOKENS = 6000
MAX_TOOL_RESULT_CHARS = 1500
MAX_HISTORY_CHARS = 500
MAX_HISTORY_TURNS = 2
MAX_TOOL_ITERATIONS = 5  # ✅ 限制最多调用5个工具,确保选择最合适的工具
MAX_OUTPUT_TOKENS = 2000

# MCP 工具配置 - 包含财务数据和市场新闻工具
MCP_TOOLS = [
    # 财务数据工具 (EasyReportDataMCP)
    {"type": "function", "function": {"name": "advanced_search_company", "description": "Search US companies by name, ticker, or CIK. Returns company information including CIK, name, tickers, and industry classification.", "parameters": {"type": "object", "properties": {"company_input": {"type": "string", "description": "Company name (e.g., 'Tesla'), ticker symbol (e.g., 'TSLA'), or CIK code (e.g., '0001318605')"}}, "required": ["company_input"]}}},
    {"type": "function", "function": {"name": "get_latest_financial_data", "description": "Get the most recent financial data for a company including revenue, net income, EPS, operating expenses, and cash flow.", "parameters": {"type": "object", "properties": {"cik": {"type": "string", "description": "Company CIK code (10-digit format, e.g., '0001318605')"}}, "required": ["cik"]}}},
    {"type": "function", "function": {"name": "extract_financial_metrics", "description": "Extract multi-year financial metrics trends showing historical performance over specified years.", "parameters": {"type": "object", "properties": {"cik": {"type": "string", "description": "Company CIK code (10-digit format)"}, "years": {"type": "integer", "description": "Number of years of data to retrieve (e.g., 3 or 5)", "default": 3}}, "required": ["cik", "years"]}}},
    
    # 市场和新闻工具 (MarketandStockMCP)
    {"type": "function", "function": {"name": "get_quote", "description": "Get real-time stock quote data including current price, daily change, high/low, and previous close. Use when users ask about current stock prices or market performance.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string", "description": "Stock ticker symbol (e.g., 'AAPL', 'TSLA', 'MSFT')"}}, "required": ["symbol"]}}},
    {"type": "function", "function": {"name": "get_market_news", "description": "Get latest market news by category. Use when users ask about general market trends, forex, crypto, or M&A news.", "parameters": {"type": "object", "properties": {"category": {"type": "string", "enum": ["general", "forex", "crypto", "merger"], "description": "News category: general (stocks/economy), forex (currency), crypto (cryptocurrency), merger (M&A)", "default": "general"}, "min_id": {"type": "integer", "description": "Minimum news ID for pagination (default: 0)", "default": 0}}, "required": ["category"]}}},
    {"type": "function", "function": {"name": "get_company_news", "description": "Get company-specific news and announcements. Only available for North American companies. Use when users ask about specific company news.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string", "description": "Company stock ticker symbol (e.g., 'AAPL', 'TSLA')"}, "from_date": {"type": "string", "description": "Start date in YYYY-MM-DD format (optional, defaults to 7 days ago)"}, "to_date": {"type": "string", "description": "End date in YYYY-MM-DD format (optional, defaults to today)"}}, "required": ["symbol"]}}}
]


def truncate_text(text, max_chars, suffix="...[truncated]"):
    """截断文本到指定长度"""
    text = str(text)
    if len(text) <= max_chars:
        return text
    return text[:max_chars] + suffix


def call_mcp_tool(tool_name, arguments):
    """直接调用 MCP 工具函数(不通过HTTP)"""
    try:
        # ✅ 财务数据工具 - 直接调用 Python 函数
        if tool_name == "advanced_search_company":
            company_input = arguments.get("company_input", "")
            return _advanced_search_company(company_input)
        
        elif tool_name == "get_latest_financial_data":
            cik = arguments.get("cik", "")
            return _get_latest_financial_data(cik)
        
        elif tool_name == "extract_financial_metrics":
            cik = arguments.get("cik", "")
            years = arguments.get("years", 3)
            return _extract_financial_metrics(cik, years)
        
        # ✅ 市场和新闻工具 - 直接调用 Python 函数
        elif tool_name == "get_quote":
            from MarketandStockMCP.news_quote_mcp import get_quote
            symbol = arguments.get("symbol", "")
            return get_quote(symbol)
        
        elif tool_name == "get_market_news":
            from MarketandStockMCP.news_quote_mcp import get_market_news
            category = arguments.get("category", "general")
            min_id = arguments.get("min_id", 0)
            return get_market_news(category, min_id)
        
        elif tool_name == "get_company_news":
            from MarketandStockMCP.news_quote_mcp import get_company_news
            symbol = arguments.get("symbol", "")
            from_date = arguments.get("from_date")
            to_date = arguments.get("to_date")
            return get_company_news(symbol, from_date, to_date)
        
        else:
            return {"error": f"Unknown tool: {tool_name}"}
    
    except Exception as e:
        import traceback
        return {
            "error": f"{str(e)}",
            "traceback": traceback.format_exc()[:500]
        }


def chatbot_response(message, history=None):
    """
    AI 助手主函数(完整对话引擎)
    支持多轮对话、动态工具调用、流式输出
    
    Args:
        message: 用户消息
        history: 对话历史,格式: [(user_msg, assistant_msg), ...]
    
    Returns:
        生成器,不断 yield 响应文本
    
    Example:
        for response in chatbot_response("What's Apple's revenue?", []):
            print(response)
    """
    if not llm_client:
        yield "❌ Error: LLM client not available"
        return
    
    if not MCP_DIRECT_AVAILABLE:
        yield "❌ Error: MCP functions not available"
        return
    
    try:
        messages = [{"role": "system", "content": get_system_prompt()}]
        
        # 添加历史(最近2轮) - 严格限制上下文长度
        if history:
            for item in history[-MAX_HISTORY_TURNS:]:
                if isinstance(item, (list, tuple)) and len(item) == 2:
                    messages.append({"role": "user", "content": item[0]})
                    assistant_msg = str(item[1])
                    if len(assistant_msg) > MAX_HISTORY_CHARS:
                        assistant_msg = truncate_text(assistant_msg, MAX_HISTORY_CHARS)
                    messages.append({"role": "assistant", "content": assistant_msg})
        
        messages.append({"role": "user", "content": message})
        
        tool_calls_log = []
        final_response_content = None
        
        # LLM 调用循环(支持多轮工具调用)
        for iteration in range(MAX_TOOL_ITERATIONS):
            response = llm_client.chat.completions.create(
                model="Qwen/Qwen2.5-72B-Instruct",
                messages=messages,
                tools=MCP_TOOLS,  # type: ignore
                max_tokens=MAX_OUTPUT_TOKENS,
                temperature=0.7,
                tool_choice="auto",
                stream=False
            )
            
            choice = response.choices[0]
            
            if choice.message.tool_calls:
                messages.append(choice.message)
                
                for tool_call in choice.message.tool_calls:
                    tool_name = tool_call.function.name
                    try:
                        tool_args = json.loads(tool_call.function.arguments)
                    except json.JSONDecodeError:
                        tool_args = {}
                    
                    tool_result = call_mcp_tool(tool_name, tool_args)
                    
                    if isinstance(tool_result, dict) and "error" in tool_result:
                        tool_calls_log.append({"name": tool_name, "arguments": tool_args, "result": tool_result, "error": True})
                        result_for_llm = json.dumps({"error": tool_result.get("error", "Unknown error")}, ensure_ascii=False)
                    else:
                        result_str = json.dumps(tool_result, ensure_ascii=False)
                        
                        if len(result_str) > MAX_TOOL_RESULT_CHARS:
                            if isinstance(tool_result, dict) and "text" in tool_result:
                                truncated_text = truncate_text(tool_result["text"], MAX_TOOL_RESULT_CHARS - 50)
                                tool_result_truncated = {"text": truncated_text, "_truncated": True}
                            elif isinstance(tool_result, dict):
                                truncated = {}
                                char_count = 0
                                for k, v in list(tool_result.items())[:8]:
                                    v_str = str(v)[:300]
                                    truncated[k] = v_str
                                    char_count += len(k) + len(v_str)
                                    if char_count > MAX_TOOL_RESULT_CHARS:
                                        break
                                tool_result_truncated = {**truncated, "_truncated": True}
                            else:
                                tool_result_truncated = {"preview": truncate_text(result_str, MAX_TOOL_RESULT_CHARS), "_truncated": True}
                            result_for_llm = json.dumps(tool_result_truncated, ensure_ascii=False)
                        else:
                            result_for_llm = result_str
                        
                        tool_calls_log.append({"name": tool_name, "arguments": tool_args, "result": tool_result})
                    
                    messages.append({
                        "role": "tool",
                        "name": tool_name,
                        "content": result_for_llm,
                        "tool_call_id": tool_call.id
                    })
                
                continue
            else:
                final_response_content = choice.message.content
                break
        
        response_prefix = ""
        
        if tool_calls_log:
            # ✅ 可折叠的工具调用显示,点击三角形展开/收起
            tool_count = len(tool_calls_log)
            
            # 添加CSS样式,实现三角形旋转动画
            response_prefix += """<style>
details.tools-container > summary::before {
    content: '▶';
    display: inline-block;
    margin-right: 8px;
    transition: transform 0.2s;
}
details.tools-container[open] > summary::before {
    transform: rotate(90deg);
}
details.tools-container > summary {
    list-style: none;
}
details.tools-container > summary::-webkit-details-marker {
    display: none;
}
</style>
"""
            
            response_prefix += f"""<div style='margin-bottom: 15px;'>
<details class='tools-container'>
  <summary style='background: #f0f0f0; padding: 8px 12px; border-radius: 6px; font-weight: 600; color: #333; cursor: pointer; user-select: none;'>
    <span>🛠️ Tools Used ({tool_count}/{MAX_TOOL_ITERATIONS} calls)</span>
  </summary>
  <div style='margin-top: 8px;'>
"""
            
            for idx, tool_call in enumerate(tool_calls_log):
                args_json = json.dumps(tool_call['arguments'], ensure_ascii=False)
                result_json = json.dumps(tool_call.get('result', {}), ensure_ascii=False, indent=2)
                result_preview = result_json[:1500] + ('...' if len(result_json) > 1500 else '')
                error_indicator = " ❌ Error" if tool_call.get('error') else ""
                
                response_prefix += f"""<details style='margin: 8px 0; border: 1px solid #ddd; border-radius: 6px; overflow: hidden;'>
  <summary style='background: #fff; padding: 10px; cursor: pointer; user-select: none; list-style: none;'>
    <strong style='color: #2c5aa0;'>📋 {idx+1}. {tool_call['name']}{error_indicator}</strong>
  </summary>
  <div style='background: #f9f9f9; padding: 12px;'>
    <pre style='background: #fff; padding: 10px; overflow-x: auto; font-size: 0.85em;'>{result_preview}</pre>
  </div>
</details>
"""
            
            # ✅ 关闭外层details和div标签
            response_prefix += """  </div>
</details>
</div>
---
"""
        
        yield response_prefix
        
        if final_response_content:
            yield response_prefix + final_response_content
        else:
            try:
                stream = llm_client.chat.completions.create(
                    model="Qwen/Qwen2.5-72B-Instruct",
                    messages=messages,
                    tools=None,
                    max_tokens=MAX_OUTPUT_TOKENS,
                    temperature=0.7,
                    stream=True
                )
                
                accumulated_text = ""
                for chunk in stream:
                    if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content:
                        accumulated_text += chunk.choices[0].delta.content
                        yield response_prefix + accumulated_text
            except Exception:
                final_resp = llm_client.chat.completions.create(
                    model="Qwen/Qwen2.5-72B-Instruct",
                    messages=messages,
                    tools=None,
                    max_tokens=MAX_OUTPUT_TOKENS,
                    temperature=0.7,
                    stream=False
                )
                yield response_prefix + (final_resp.choices[0].message.content or "")
    
    except Exception as e:
        import traceback
        error_detail = str(e)
        if "500" in error_detail:
            yield f"❌ Error: 模型服务器错误\n\n{error_detail[:200]}"
        else:
            yield f"❌ Error: {error_detail}\n\n{traceback.format_exc()[:500]}"