File size: 35,899 Bytes
1643511 716f1cd 66e07c5 716f1cd 1643511 716f1cd 66e07c5 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 66e07c5 716f1cd 66e07c5 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 66e07c5 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 f0b281d 1643511 f0b281d 1643511 f0b281d 1643511 f0b281d 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 08708af 1643511 716f1cd 1643511 716f1cd 1643511 08708af 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1ce56e4 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 08708af 66e07c5 08708af 66e07c5 08708af 66e07c5 716f1cd 1643511 716f1cd 1643511 716f1cd 1643511 716f1cd 1ce56e4 66e07c5 1ce56e4 66e07c5 716f1cd 1ce56e4 716f1cd 1ce56e4 716f1cd 1ce56e4 716f1cd 1643511 716f1cd 1643511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
"""EDGAR API Client Module with Performance Optimization"""
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import urllib3
try:
from sec_edgar_api.EdgarClient import EdgarClient
except ImportError:
EdgarClient = None
import json
import time
import threading
from functools import lru_cache
from datetime import datetime, timedelta
import re
import difflib
# Disable SSL warnings for better compatibility
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
class EdgarDataClient:
# Class-level cache for company_tickers.json (shared across instances)
_company_tickers_cache = None
_company_tickers_cache_time = None
_company_tickers_cache_ttl = 3600 # 1 hour TTL
_cache_lock = threading.Lock()
# Class-level rate limiter (SEC requires max 10 requests per second)
_last_request_time = 0
_rate_limit_lock = threading.Lock()
_min_request_interval = 0.11 # 110ms between requests (9 req/sec, safe margin)
# 新增:公司索引(加速搜索,避免每次遍历全量数据)
_by_ticker = None # ticker -> company info
_by_title = None # title (lowercase) -> company info
_by_title_norm = None # normalized title -> company info
_all_keys = None # 用于模糊匹配的所有key列表
_index_built_time = None
_index_ttl = 3600 # 1 hour
# 新增:常见别名映射(提升搜索智能性)
_alias_map = {
"google": "alphabet inc",
"alphabet": "alphabet inc",
"facebook": "meta platforms, inc.",
"meta": "meta platforms, inc.",
"amazon": "amazon.com, inc.",
"apple": "apple inc.",
"microsoft": "microsoft corporation",
"netflix": "netflix, inc.",
"nvidia": "nvidia corporation",
"tesla": "tesla, inc.",
"adobe": "adobe inc.",
"oracle": "oracle corporation",
"ibm": "international business machines corporation",
"paypal": "paypal holdings, inc.",
"shopify": "shopify inc.",
}
def __init__(self, user_agent="Juntao Peng Financial Report Metrics App (jtyxabc@gmail.com)"):
"""Initialize EDGAR client with connection pooling and timeout"""
self.user_agent = user_agent
# 新增:实例级搜索缓存(进一步减少重复搜索开销)
self._search_cache = {}
# Configure requests session with connection pooling
self.session = requests.Session()
# Configure retry strategy with enhanced retries for stability
retry_strategy = Retry(
total=5, # Increased from 3 to 5 for better reliability
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS"]
)
adapter = HTTPAdapter(
pool_connections=10,
pool_maxsize=20,
max_retries=retry_strategy,
pool_block=False
)
self.session.mount("http://", adapter)
self.session.mount("https://", adapter)
# Set default timeout with connection and read timeouts
self.timeout = (10, 30) # (connect timeout, read timeout)
# Initialize sec_edgar_api client with timeout wrapper
if EdgarClient:
self.edgar = EdgarClient(user_agent=user_agent)
# Monkey patch to add timeout
self._patch_edgar_client_timeout()
else:
self.edgar = None
def _patch_edgar_client_timeout(self):
"""Monkey patch sec_edgar_api to add timeout support"""
if not self.edgar:
return
# Wrap get_submissions and get_company_facts with timeout (thread-based, Gradio compatible)
original_get_submissions = self.edgar.get_submissions
original_get_company_facts = self.edgar.get_company_facts
def get_submissions_with_timeout(cik):
"""Thread-based timeout wrapper for get_submissions (Gradio compatible)"""
result = [None]
exception = [None]
def wrapper():
try:
result[0] = original_get_submissions(cik)
except Exception as e:
exception[0] = e
thread = threading.Thread(target=wrapper, daemon=True)
thread.start()
# Use read timeout value (second element of timeout tuple)
timeout_seconds = self.timeout[1] if isinstance(self.timeout, tuple) else self.timeout
thread.join(timeout=timeout_seconds)
if thread.is_alive():
raise TimeoutError(f"SEC API request timeout ({timeout_seconds}s)")
if exception[0]:
raise exception[0]
return result[0]
def get_company_facts_with_timeout(cik):
"""Thread-based timeout wrapper for get_company_facts (Gradio compatible)"""
result = [None]
exception = [None]
def wrapper():
try:
result[0] = original_get_company_facts(cik)
except Exception as e:
exception[0] = e
thread = threading.Thread(target=wrapper, daemon=True)
thread.start()
# Use read timeout value (second element of timeout tuple)
timeout_seconds = self.timeout[1] if isinstance(self.timeout, tuple) else self.timeout
thread.join(timeout=timeout_seconds)
if thread.is_alive():
raise TimeoutError(f"SEC API request timeout ({timeout_seconds}s)")
if exception[0]:
raise exception[0]
return result[0]
self.edgar.get_submissions = get_submissions_with_timeout
self.edgar.get_company_facts = get_company_facts_with_timeout
def _rate_limit(self):
"""Thread-safe rate limiting to comply with SEC requirements"""
with self._rate_limit_lock:
current_time = time.time()
time_since_last = current_time - EdgarDataClient._last_request_time
if time_since_last < self._min_request_interval:
sleep_time = self._min_request_interval - time_since_last
time.sleep(sleep_time)
EdgarDataClient._last_request_time = time.time()
def _normalize_text(self, s: str) -> str:
"""规范化文本:用于提升匹配准确度"""
if not s:
return ""
s = s.lower().strip()
s = s.replace("&", " and ")
s = re.sub(r"[.,()\-_/]", " ", s)
s = re.sub(r"\s+", " ", s)
# 移除常见后缀词
stopwords = {"inc", "inc.", "incorporated", "corp", "corporation", "co", "company", "plc", "ltd", "llc", "the"}
tokens = [t for t in s.split() if t not in stopwords]
return " ".join(tokens).strip()
def _ensure_company_index(self):
"""确保公司索引已构建(按需构建或过期重建)"""
with self._cache_lock:
current_time = time.time()
# 若 company_tickers 缓存不存在或已过期,先刷新
if (EdgarDataClient._company_tickers_cache is None or
EdgarDataClient._company_tickers_cache_time is None or
current_time - EdgarDataClient._company_tickers_cache_time >= self._company_tickers_cache_ttl):
# 拉取并更新 company_tickers 缓存
self._rate_limit()
url = "https://www.sec.gov/files/company_tickers.json"
headers = {"User-Agent": self.user_agent}
response = self.session.get(url, headers=headers, timeout=self.timeout)
response.raise_for_status()
companies = response.json()
EdgarDataClient._company_tickers_cache = companies
EdgarDataClient._company_tickers_cache_time = current_time
else:
companies = EdgarDataClient._company_tickers_cache
# 若索引不存在或已过期,则重建索引
if (EdgarDataClient._by_ticker is None or
EdgarDataClient._by_title is None or
EdgarDataClient._by_title_norm is None or
EdgarDataClient._all_keys is None or
EdgarDataClient._index_built_time is None or
current_time - EdgarDataClient._index_built_time >= EdgarDataClient._index_ttl):
by_ticker = {}
by_title = {}
by_title_norm = {}
all_keys = []
for _, company in companies.items():
title = company.get("title", "")
ticker = company.get("ticker", "")
cik_str = str(company.get("cik_str", "")).zfill(10)
title_lower = title.lower()
ticker_lower = ticker.lower()
title_norm = self._normalize_text(title)
# 构建索引:ticker、title、normalized title
if ticker_lower:
by_ticker[ticker_lower] = {"cik": cik_str, "name": title, "ticker": ticker}
all_keys.append(ticker_lower)
if title_lower:
by_title[title_lower] = {"cik": cik_str, "name": title, "ticker": ticker}
if title_norm:
by_title_norm[title_norm] = {"cik": cik_str, "name": title, "ticker": ticker}
all_keys.append(title_norm)
EdgarDataClient._by_ticker = by_ticker
EdgarDataClient._by_title = by_title
EdgarDataClient._by_title_norm = by_title_norm
EdgarDataClient._all_keys = all_keys
EdgarDataClient._index_built_time = current_time
def search_company_by_name(self, company_name):
"""Search company CIK by company name with caching and optimized ticker matching"""
try:
# 实例级缓存命中检查(按规范化后的query)
norm_query = self._normalize_text(company_name)
cache_hit = self._search_cache.get(norm_query)
if cache_hit:
return cache_hit
# 确保索引已构建(首次或过期后会重建)
self._ensure_company_index()
# 获取索引引用(已在锁内构建完成)
by_ticker = EdgarDataClient._by_ticker
by_title = EdgarDataClient._by_title
by_title_norm = EdgarDataClient._by_title_norm
all_keys = EdgarDataClient._all_keys
# ✅ OPTIMIZATION 1: Ticker 优先匹配(遵循项目规范)
raw = company_name.strip().lower()
raw_compact = re.sub(r"[^a-z0-9]", "", raw)
is_ticker_like = len(raw_compact) <= 5 and len(raw_compact) >= 1
if is_ticker_like and raw_compact in by_ticker:
result = by_ticker[raw_compact]
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 2: 别名映射(如 'google' -> 'alphabet inc')
alias_target = EdgarDataClient._alias_map.get(norm_query)
if alias_target:
alias_norm = self._normalize_text(alias_target)
# 先尝试规范化标题
if alias_norm in by_title_norm:
result = by_title_norm[alias_norm]
self._search_cache[norm_query] = result
return result
# 再尝试原始标题
alias_lower = alias_target.lower()
if alias_lower in by_title:
result = by_title[alias_lower]
self._search_cache[norm_query] = result
return result
# 最后尝试 ticker(有些别名可能实际上是ticker)
alias_ticker = re.sub(r"[^a-z0-9]", "", alias_lower)
if alias_ticker in by_ticker:
result = by_ticker[alias_ticker]
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 3: 精确匹配(原始标题)
title_lower = company_name.lower().strip()
if title_lower in by_title:
result = by_title[title_lower]
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 4: 精确匹配(规范化标题)
if norm_query in by_title_norm:
result = by_title_norm[norm_query]
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 5: 精确匹配(ticker,再次尝试原始输入)
if raw_compact in by_ticker:
result = by_ticker[raw_compact]
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 6: 部分包含匹配
partial_matches = []
for key in by_title_norm.keys():
if norm_query in key:
partial_matches.append(key)
if not partial_matches:
for t in by_ticker.keys():
if norm_query in t:
partial_matches.append(t)
if partial_matches:
best_key = max(
partial_matches,
key=lambda k: difflib.SequenceMatcher(None, norm_query, k).ratio()
)
result = by_title_norm.get(best_key) or by_ticker.get(best_key)
if result:
self._search_cache[norm_query] = result
return result
# ✅ OPTIMIZATION 7: 模糊匹配(difflib,用于拼写近似的情况)
close = difflib.get_close_matches(norm_query, all_keys, n=1, cutoff=0.78)
if close:
best = close[0]
result = by_title_norm.get(best) or by_ticker.get(best)
if result:
self._search_cache[norm_query] = result
return result
# 未找到
return None
except TimeoutError as e:
print(f"Timeout searching company: {e}")
return None
except Exception as e:
print(f"Error searching company: {e}")
return None
@lru_cache(maxsize=128)
def get_company_info(self, cik):
"""
Get basic company information (cached)
Args:
cik (str): Company CIK code
Returns:
dict: Dictionary containing company information
"""
if not self.edgar:
print("sec_edgar_api library not installed")
return None
try:
self._rate_limit()
# Get company submissions (now has timeout protection)
submissions = self.edgar.get_submissions(cik=cik)
return {
"cik": cik,
"name": submissions.get("name", ""),
"tickers": submissions.get("tickers", []),
"sic": submissions.get("sic", ""),
"sic_description": submissions.get("sicDescription", "")
}
except TimeoutError as e:
print(f"Timeout getting company info for CIK {cik}: {e}")
return None
except Exception as e:
print(f"Error getting company info: {e}")
return None
@lru_cache(maxsize=128)
def get_company_filings(self, cik, form_types=None):
"""
Get all company filing documents (cached)
Args:
cik (str): Company CIK code
form_types (tuple): Tuple of form types, e.g., ('10-K', '10-Q'), None for all types
Returns:
list: List of filing documents
"""
if not self.edgar:
print("sec_edgar_api library not installed")
return []
# Convert list to tuple for caching (lists are not hashable)
if form_types and isinstance(form_types, list):
form_types = tuple(form_types)
try:
self._rate_limit()
# Get company submissions (now has timeout protection)
submissions = self.edgar.get_submissions(cik=cik)
# Extract filing information
filings = []
recent = submissions.get("filings", {}).get("recent", {})
# Get data from each field
form_types_list = recent.get("form", [])
filing_dates = recent.get("filingDate", [])
accession_numbers = recent.get("accessionNumber", [])
primary_documents = recent.get("primaryDocument", [])
# Iterate through all filings
for i in range(len(form_types_list)):
form_type = form_types_list[i]
# ✅ 归一化表单类型: "10-K/A" -> "10-K", "20-F/A" -> "20-F"
# 这样修订版年报也能被正确识别和使用
normalized_form_type = form_type.split('/')[0]
# Filter by form type if specified (使用归一化后的类型)
if form_types and normalized_form_type not in form_types:
continue
filing_date = filing_dates[i] if i < len(filing_dates) else ""
accession_number = accession_numbers[i] if i < len(accession_numbers) else ""
primary_document = primary_documents[i] if i < len(primary_documents) else ""
filing = {
"form_type": form_type, # 保留原始form_type供参考
"filing_date": filing_date,
"accession_number": accession_number,
"primary_document": primary_document
}
filings.append(filing)
return filings
except TimeoutError as e:
print(f"Timeout getting company filings for CIK {cik}: {e}")
return []
except Exception as e:
print(f"Error getting company filings: {e}")
return []
@lru_cache(maxsize=128)
def get_company_facts(self, cik):
"""
Get all company financial facts data (cached)
Args:
cik (str): Company CIK code
Returns:
dict: Company financial facts data
"""
if not self.edgar:
print("sec_edgar_api library not installed")
return {}
try:
self._rate_limit()
# Now has timeout protection via monkey patch
facts = self.edgar.get_company_facts(cik=cik)
return facts
except TimeoutError as e:
print(f"Timeout getting company facts for CIK {cik}: {e}")
return {}
except Exception as e:
print(f"Error getting company facts: {e}")
return {}
def get_financial_data_for_period(self, cik, period):
"""
Get financial data for a specific period (supports annual and quarterly) - Cached
Args:
cik (str): Company CIK code
period (str): Period in format 'YYYY' or 'YYYYQX' (e.g., '2025' or '2025Q3')
Returns:
dict: Financial data dictionary
"""
if not self.edgar:
print("sec_edgar_api library not installed")
return {}
# 实例级缓存(避免重复计算)
cache_key = f"period_{cik}_{period}"
if hasattr(self, '_period_cache') and cache_key in self._period_cache:
return self._period_cache[cache_key]
if not hasattr(self, '_period_cache'):
self._period_cache = {}
try:
# Get company financial facts
facts = self.get_company_facts(cik)
if not facts:
return {}
# Extract us-gaap and ifrs-full financial data (20-F may use IFRS)
us_gaap = facts.get("facts", {}).get("us-gaap", {})
ifrs_full = facts.get("facts", {}).get("ifrs-full", {})
# Define financial metrics and their XBRL tags
# Include multiple possible tags to improve match rate (including US-GAAP and IFRS tags)
financial_metrics = {
"total_revenue": ["Revenues", "RevenueFromContractWithCustomerExcludingAssessedTax", "RevenueFromContractWithCustomerIncludingAssessedTax", "SalesRevenueNet", "RevenueFromContractWithCustomer", "Revenue"],
"net_income": ["NetIncomeLoss", "ProfitLoss", "NetIncome", "ProfitLossAttributableToOwnersOfParent"],
"earnings_per_share": ["EarningsPerShareBasic", "EarningsPerShare", "BasicEarningsPerShare", "BasicEarningsLossPerShare"],
"operating_expenses": ["OperatingExpenses", "OperatingCostsAndExpenses", "OperatingExpensesExcludingDepreciationAndAmortization", "CostsAndExpenses", "GeneralAndAdministrativeExpense", "CostOfRevenue", "ResearchAndDevelopmentExpense", "SellingAndMarketingExpense"],
"operating_cash_flow": ["NetCashProvidedByUsedInOperatingActivities", "NetCashProvidedUsedInOperatingActivities", "NetCashFlowsFromUsedInOperatingActivities", "CashFlowsFromUsedInOperatingActivities"],
}
# Store result with new optimized structure
result = {
"period": period,
"_metadata": {},
"metrics": {}
}
# Determine target form types to search
if 'Q' in period:
# Quarterly data, mainly search 10-Q (20-F usually doesn't have quarterly reports)
target_forms = ("10-Q",) # Use tuple for caching
target_forms_annual = ("10-K", "20-F") # for fallback
year = int(period.split('Q')[0])
quarter = period.split('Q')[1]
else:
# Annual data, search 10-K and 20-F annual forms
target_forms = ("10-K", "20-F") # Use tuple for caching
target_forms_annual = target_forms
year = int(period)
quarter = None
# Get company filings to find accession number and primary document
filings = self.get_company_filings(cik, form_types=target_forms)
filings_map = {} # Map: form -> {accession_number, primary_document, filing_date}
# Build filing map for quick lookup
for filing in filings:
form_type = filing.get("form_type", "")
filing_date = filing.get("filing_date", "")
accession_number = filing.get("accession_number", "")
primary_document = filing.get("primary_document", "")
if filing_date and accession_number:
# Extract year from filing_date (format: YYYY-MM-DD)
file_year = int(filing_date[:4]) if len(filing_date) >= 4 else 0
# ✅ 归一化表单类型: "10-K/A" -> "10-K", "20-F/A" -> "20-F"
# 使用归一化后的类型构建 key,这样 facts 中的 "10-K" 能命中 "10-K/A"
normalized_form_type = form_type.split('/')[0]
# ✅ FIXED: Remove year filter to keep all filings
# 20-F forms are often filed in the year after the fiscal year
# We'll match them later using fiscal year (fy) and filed date
key = f"{normalized_form_type}_{file_year}" # 使用归一化后的类型
if key not in filings_map:
filings_map[key] = {
"accession_number": accession_number,
"primary_document": primary_document,
"form_type": form_type, # 保留原始 form_type
"filing_date": filing_date
}
# Iterate through each financial metric
for metric_key, metric_tags in financial_metrics.items():
# Support multiple possible tags
for metric_tag in metric_tags:
# Search both US-GAAP and IFRS tags
metric_data = None
data_source = None
if metric_tag in us_gaap:
metric_data = us_gaap[metric_tag]
data_source = "us-gaap"
elif metric_tag in ifrs_full:
metric_data = ifrs_full[metric_tag]
data_source = "ifrs-full"
if metric_data:
units = metric_data.get("units", {})
# Find USD unit data (supports USD and USD/shares)
usd_data = None
if "USD" in units:
usd_data = units["USD"]
elif "USD/shares" in units and metric_key == "earnings_per_share":
# EPS uses USD/shares unit
usd_data = units["USD/shares"]
if usd_data:
# Try exact match first, then loose match
matched_entry = None
# Search for data in the specified period
for entry in usd_data:
form = entry.get("form", "")
fy = entry.get("fy", 0)
fp = entry.get("fp", "")
end_date = entry.get("end", "")
if not end_date or len(end_date) < 4:
continue
entry_year = int(end_date[:4])
# Check if form type matches
if form in target_forms:
if quarter:
# Quarterly data match
if entry_year == year and fp == f"Q{quarter}":
# If already matched, compare end date, choose the latest
if matched_entry:
if entry.get("end", "") > matched_entry.get("end", ""):
matched_entry = entry
else:
matched_entry = entry
else:
# Annual data match - prioritize fiscal year (fy) field
# Strategy 1: Exact match by fiscal year
if fy == year and (fp == "FY" or fp == "" or not fp):
# If already matched, compare end date, choose the latest
if matched_entry:
if entry.get("end", "") > matched_entry.get("end", ""):
matched_entry = entry
else:
matched_entry = entry
# Strategy 2: Match by end date year (when fy not available or doesn't match)
elif not matched_entry and entry_year == year and (fp == "FY" or fp == "" or not fp):
matched_entry = entry
# Strategy 3: Allow fy to differ by 1 year (fiscal year vs calendar year mismatch)
elif not matched_entry and fy > 0 and abs(fy - year) <= 1 and (fp == "FY" or fp == "" or not fp):
matched_entry = entry
# Strategy 4: Match by frame field for 20-F
elif not matched_entry and form == "20-F" and "frame" in entry:
frame = entry.get("frame", "")
if f"CY{year}" in frame or str(year) in end_date:
matched_entry = entry
# If quarterly data not found, try finding from annual report (fallback strategy)
if not matched_entry and quarter and target_forms_annual:
for entry in usd_data:
form = entry.get("form", "")
end_date = entry.get("end", "")
fp = entry.get("fp", "")
if form in target_forms_annual and end_date:
# Check if end date is within this quarter range
if str(year) in end_date and f"Q{quarter}" in fp:
matched_entry = entry
break
# Apply matched data
if matched_entry:
# Store metric value and tag
result["metrics"][metric_key] = {
"value": matched_entry.get("val", 0),
"tag": metric_tag
}
# Get form and accession info - only populate metadata once
if not result["_metadata"]:
form_type = matched_entry.get("form", "")
accn_from_facts = matched_entry.get('accn', '').replace('-', '')
filed_date = matched_entry.get('filed', '')
# Multi-strategy filing lookup for 20-F and cross-year submissions
filing_info = None
# Strategy 1: Try matching by fiscal year
filing_key = f"{form_type}_{year}"
filing_info = filings_map.get(filing_key)
# Strategy 2: Try matching by filed year (for 20-F filed in next year)
if not filing_info and filed_date:
filed_year = int(filed_date[:4]) if len(filed_date) >= 4 else 0
if filed_year > 0:
filing_key = f"{form_type}_{filed_year}"
filing_info = filings_map.get(filing_key)
# Strategy 3: Try fiscal year + 1 (common for 20-F)
if not filing_info:
filing_key = f"{form_type}_{year + 1}"
filing_info = filings_map.get(filing_key)
# Strategy 4: Search all filings with matching form type and accession
if not filing_info and accn_from_facts:
for key, finfo in filings_map.items():
if finfo["form_type"] == form_type:
filing_accn = finfo["accession_number"].replace('-', '')
if filing_accn == accn_from_facts:
filing_info = finfo
break
# Generate source URL
source_url = ""
if filing_info:
accession_number = filing_info["accession_number"].replace('-', '')
primary_document = filing_info["primary_document"]
if primary_document:
source_url = f"https://www.sec.gov/Archives/edgar/data/{cik}/{accession_number}/{primary_document}"
else:
source_url = f"https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK={cik}&type={form_type}&dateb=&owner=exclude&count=100"
else:
source_url = f"https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK={cik}&type={form_type}&dateb=&owner=exclude&count=100"
# Populate metadata (only once per period)
result["_metadata"] = {
"form": matched_entry.get("form", ""),
"fiscal_year": matched_entry.get("fy", 0),
"fiscal_period": matched_entry.get("fp", ""),
"start_date": matched_entry.get("start", ""),
"end_date": matched_entry.get("end", ""),
"filed_date": matched_entry.get("filed", ""),
"source_url": source_url,
"data_source": data_source
}
# If data is found, break out of tag loop
if metric_key in result["metrics"]:
break
# 缓存结果
if result and "period" in result:
self._period_cache[cache_key] = result
return result
except Exception as e:
print(f"Error getting financial data for period {period}: {e}")
return {}
|