File size: 19,212 Bytes
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c7fc0
 
 
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce56e4
1643511
 
 
 
 
 
 
1ce56e4
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce56e4
 
 
1643511
 
1ce56e4
 
 
1643511
 
 
 
188cf2a
 
1643511
 
 
 
 
 
 
 
 
188cf2a
 
 
 
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e07c5
1ce56e4
66e07c5
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e07c5
 
1643511
 
66e07c5
 
 
1288c58
1643511
1288c58
 
 
 
 
 
 
 
 
 
 
b6e2818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bab18d
 
b6e2818
 
 
 
3bab18d
b6e2818
 
 
 
 
 
 
 
 
 
 
3bab18d
 
b6e2818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""

MCP Server for SEC EDGAR Financial Data - FastMCP Implementation

Uses Anthropic official FastMCP SDK for cleaner, more maintainable code

"""

from mcp.server.fastmcp import FastMCP
from edgar_client import EdgarDataClient
from financial_analyzer import FinancialAnalyzer

# Initialize EDGAR clients
edgar_client = EdgarDataClient(
    user_agent="Juntao Peng Financial Report Metrics App (jtyxabc@gmail.com)"
)

financial_analyzer = FinancialAnalyzer(
    user_agent="Juntao Peng Financial Report Metrics App (jtyxabc@gmail.com)"
)

# Create FastMCP server with pure JSON response and stateless HTTP
mcp = FastMCP("sec-financial-data", json_response=True, stateless_http=True)


@mcp.tool()
def search_company(company_name: str) -> dict:
    """

    Search for a company by name in the SEC EDGAR database. Use this tool when the user mentions 

    a company name or asks about a company without providing its CIK code. This tool will find the 

    company's official information needed for other financial queries.

    

    When to use:

    - User mentions a company name (e.g., "Tesla", "Apple", "Microsoft")

    - Need to find a company's CIK code for other tool calls

    - User asks "tell me about [company name]"

    - Need to verify company ticker symbols

    

    Examples:

    - "Search for Tesla" โ†’ Returns Tesla's CIK, ticker (TSLA), and industry info

    - "Find Apple" โ†’ Returns Apple's CIK, ticker (AAPL), and classification

    - "What's Microsoft's CIK?" โ†’ Returns CIK code and full company details

    

    Args:

        company_name: Company name to search (e.g., "Microsoft", "Apple Inc", "Tesla Motors")

    

    Returns:

        dict: Company information containing:

              - cik: Company Central Index Key (unique identifier needed for other tools)

              - name: Official company name registered with SEC

              - tickers: Stock ticker symbol(s) (e.g., ["TSLA"], ["AAPL"])

              - sic: Standard Industrial Classification code

              - sic_description: Industry/sector description

    """
    result = edgar_client.search_company_by_name(company_name)
    if result:
        return result
    else:
        return {"error": f"No company found with name: {company_name}"}


@mcp.tool()
def get_company_info(cik: str) -> dict:
    """

    Get detailed company information using CIK code. Use this when you already have a company's 

    CIK code and need to retrieve or verify its official details.

    

    When to use:

    - Already have a CIK code from search_company

    - Need to verify company details

    - User provides a CIK code directly

    

    Args:

        cik: Company CIK code in 10-digit format (e.g., "0000789019" for Microsoft)

    

    Returns:

        dict: Detailed company information including name, tickers, SIC code, and industry description

    """
    result = edgar_client.get_company_info(cik)
    if result:
        return result
    else:
        return {"error": f"No company found with CIK: {cik}"}


@mcp.tool()
def get_company_filings(cik: str, form_types: list[str] | None = None) -> dict:
    """

    Get a list of SEC filings for a company. SEC filings are official documents companies must 

    submit, including annual reports (10-K), quarterly reports (10-Q), and foreign company 

    annual reports (20-F). Use this to see what reports are available or to get filing dates.

    

    When to use:

    - User asks "what reports has [company] filed?"

    - Need to see filing history or dates

    - Want to know what documents are available

    - Checking if specific report types exist

    

    Common form types:

    - 10-K: Annual report (comprehensive yearly financial statement)

    - 10-Q: Quarterly report (financial updates every 3 months)

    - 20-F: Annual report for foreign companies

    - 8-K: Current report (major events/changes)

    

    Args:

        cik: Company CIK code

        form_types: Optional list to filter by specific form types (e.g., ["10-K", "10-Q"])

                   If None, returns all filing types

    

    Returns:

        dict: Filing information containing:

              - total: Total number of filings found

              - returned: Number of filings in response (max 20)

              - filings: List of filing details with dates, form types, and document links

    """
    # Convert list to tuple for caching compatibility
    if form_types:
        form_types = tuple(form_types)
    result = edgar_client.get_company_filings(cik, form_types)
    if result:
        limited_result = result[:20]
        return {
            "total": len(result),
            "returned": len(limited_result),
            "filings": limited_result
        }
    else:
        return {"error": f"No filings found for CIK: {cik}"}


@mcp.tool()
def get_financial_data(cik: str, period: str) -> dict:
    """

    Get financial data for a specific time period (year or quarter). Use this when the user asks 

    about financials for a particular period, like "2024 results" or "Q3 2024 performance".

    

    When to use:

    - User specifies a particular year (e.g., "2024 financials")

    - User asks about a specific quarter (e.g., "Q3 2024 results")

    - Need data for a single, specific time period

    - Comparing specific periods (call multiple times)

    

    Period format:

    - Annual: "YYYY" (e.g., "2024" for fiscal year 2024)

    - Quarterly: "YYYYQX" (e.g., "2024Q3" for Q3 of 2024, "2023Q4" for Q4 of 2023)

    

    Args:

        cik: Company CIK code

        period: Time period in format "YYYY" for annual or "YYYYQX" for quarterly

                Examples: "2024", "2023", "2024Q3", "2023Q4"

    

    Returns:

        dict: Financial metrics for the specified period including:

              - period: Time identifier (e.g., "FY2024", "2024Q3")

              - total_revenue: Total sales/revenue for the period

              - net_income: Profit (or loss) after all expenses

              - earnings_per_share: Profit per share of stock (EPS)

              - operating_expenses: Costs of running business operations

              - operating_cash_flow: Cash generated from business operations

              - source_url: Link to the SEC filing document

              - source_form: Type of SEC form (10-K, 10-Q, or 20-F)

              - data_source: Data source standard (us-gaap or ifrs-full)

    """
    result = edgar_client.get_financial_data_for_period(cik, period)
    if result and "period" in result:
        return result
    else:
        return {"error": f"No financial data found for CIK: {cik}, Period: {period}"}


@mcp.tool()
def extract_financial_metrics(cik: str, years: int = 3) -> dict:
    """

    Extract comprehensive financial metrics spanning multiple years with both annual and quarterly 

    data. This is the MOST POWERFUL tool for financial analysis - it returns complete multi-year 

    trends including all quarters. Perfect for understanding company performance over time, 

    identifying growth patterns, and comprehensive financial analysis.

    

    When to use (RECOMMENDED for most financial analysis):

    - User asks about "trends over time"

    - Questions about "growth", "performance over years"

    - "Show me [company]'s financials" (without specifying a period)

    - Comparative analysis needs

    - "How has [company] been doing?"

    - ANY request for multiple periods of data

    

    What makes this tool special:

    - Returns BOTH annual (FY) and quarterly (Q1-Q4) data

    - Sorted newest to oldest (FY2024 โ†’ Q4 โ†’ Q3 โ†’ Q2 โ†’ Q1 โ†’ FY2023...)

    - Includes multiple years in one call (saves time)

    - Ideal for trend analysis and year-over-year comparisons

    

    Example use cases:

    - "Show Tesla's financial trends for 3 years" โ†’ Perfect use case

    - "How has Apple's revenue grown?" โ†’ Use this (default 3 years)

    - "Compare Microsoft's quarterly performance" โ†’ Returns all quarters

    - "What are Amazon's financial metrics?" โ†’ Comprehensive overview

    

    Args:

        cik: Company CIK code

        years: Number of recent years to extract (1-10, default: 3)

               - 3 years = ~15 data points (3 annual + ~12 quarterly)

               - 5 years = ~25 data points (5 annual + ~20 quarterly)

               - More years = more comprehensive trend analysis

    

    Returns:

        dict: Comprehensive financial dataset containing:

              - periods: Total number of time periods returned

              - data: List of financial records, each with:

                * period: Time identifier (e.g., "FY2024", "2024Q3", "2023Q1")

                * total_revenue: Company's total sales/revenue for that period

                * net_income: Profit after all expenses (can be negative for losses)

                * earnings_per_share: Profit per share of stock (EPS)

                * operating_expenses: Costs of running the business

                * operating_cash_flow: Actual cash generated from operations

                * source_url: Link to SEC filing document

                * source_form: SEC form type (10-K for annual, 10-Q for quarterly, 20-F for foreign companies)

                * data_source: Data standard used (us-gaap or ifrs-full)

                * _sequence: Internal ordering number

              

              Data is sorted newest first: FY2024 โ†’ 2024Q4 โ†’ 2024Q3 โ†’ 2024Q2 โ†’ 2024Q1 โ†’ FY2023...

              

              Note: The underlying data structure is optimized to reduce redundancy.

              Each period's metadata (form, dates, URLs) is stored efficiently.

    """
    if years < 1 or years > 10:
        return {"error": "Years parameter must be between 1 and 10"}
    
    # โœ… ็›ดๆŽฅ่ฐƒ็”จ extract_financial_metrics,ไธๅš้ข„ๆฃ€ๆŸฅ
    # extract_financial_metrics ๅ†…้ƒจไผšๅค„็†ๆ‰€ๆœ‰ๆƒ…ๅ†ต(10-K, 20-F, ๆ•ฐๆฎ็ผบๅคฑ็ญ‰)
    metrics = financial_analyzer.extract_financial_metrics(cik, years)
    
    if metrics:
        formatted = financial_analyzer.format_financial_data(metrics)
        return {
            "periods": len(formatted),
            "data": formatted
        }
    else:
        # โœ… ๅฆ‚ๆžœๆฒกๆœ‰ๆ•ฐๆฎ,่ฟ”ๅ›ž็ฎ€ๆด้”™่ฏฏไฟกๆฏ
        return {
            "error": f"No financial metrics found for CIK: {cik}",
            "suggestion": "Please verify the CIK is correct or try get_latest_financial_data"
        }


@mcp.tool()
def get_latest_financial_data(cik: str) -> dict:
    """

    Get the most recent financial snapshot for a company - returns only the latest annual report 

    data. Use this for quick checks of current financial status or when the user asks about 

    "latest" or "most recent" results without needing historical data.

    

    When to use:

    - User asks "what are [company]'s latest financials?"

    - "How is [company] doing currently?"

    - "Show me [company]'s most recent results"

    - Quick status check without historical context

    - Need just the newest data point (faster than extract_financial_metrics)

    

    What this returns:

    - Only the most recent ANNUAL (fiscal year) data

    - Does NOT include quarterly breakdowns

    - Fastest way to get current snapshot

    

    Examples:

    - "What's Tesla's latest revenue?" โ†’ Returns most recent annual revenue

    - "How much did Apple earn recently?" โ†’ Returns latest annual net income

    - "Show me Microsoft's current financials" โ†’ Returns latest fiscal year data

    

    Args:

        cik: Company CIK code

    

    Returns:

        dict: Latest financial data from most recent fiscal year including:

              - period: The fiscal year (e.g., "FY2024")

              - total_revenue: Most recent annual revenue

              - net_income: Most recent annual profit

              - earnings_per_share: Latest annual EPS

              - operating_expenses: Latest annual operating costs

              - operating_cash_flow: Latest annual cash from operations

              - source_url: Link to the SEC filing

              - source_form: SEC form type (usually 10-K or 20-F)

    """
    result = financial_analyzer.get_latest_financial_data(cik)
    if result and "period" in result:
        return result
    else:
        return {
            "error": f"No latest financial data found for CIK: {cik}"
        }


@mcp.tool()
def advanced_search_company(company_input: str) -> dict:
    """

    Flexible smart search that accepts ANY type of company identifier - company name, stock ticker 

    symbol (like TSLA, AAPL, MSFT), or CIK code. The tool automatically detects what type of 

    identifier you provide. Use this when you're uncertain what type of identifier the user gave.

    

    When to use:

    - User provides just a ticker symbol (e.g., "TSLA", "AAPL")

    - Unclear if user gave name, ticker, or CIK

    - Want most flexible search option

    - User input could be any identifier type

    

    What it accepts:

    - Company names: "Tesla", "Apple Inc", "Microsoft Corporation"

    - Ticker symbols: "TSLA", "AAPL", "MSFT", "GOOGL"

    - CIK codes: "0001318605", "0000320193"

    

    Examples:

    - Input: "TSLA" โ†’ Recognizes as ticker, returns Tesla info

    - Input: "Tesla" โ†’ Searches by name, returns Tesla info

    - Input: "0001318605" โ†’ Recognizes as CIK, returns Tesla info

    - Input: "AAPL" โ†’ Returns Apple information

    

    Args:

        company_input: Any company identifier - name ("Tesla"), ticker ("TSLA"), or CIK ("0001318605")

    

    Returns:

        dict: Complete company information including:

              - cik: Company's Central Index Key

              - name: Official registered company name

              - tickers: Stock ticker symbol(s)

              - sic: Standard Industrial Classification code

              - sic_description: Industry/sector description

    """
    result = financial_analyzer.search_company(company_input)
    if result.get("error"):
        return {"error": result["error"]}
    return result


# For production deployment
if __name__ == "__main__":
    import os
    
    # โœ… Set port to 7861 for EasyReportDataMCP (MarketandStockMCP uses 7870)
    port = int(os.getenv("PORT", "7861"))
    host = os.getenv("HOST", "0.0.0.0")
    
    print("โ–ถ๏ธ Starting EasyReportDataMCP Server...")
    print(f"๐Ÿ“ก MCP server will listen on {host}:{port}")
    print("โœ… Available tools: advanced_search_company, get_latest_financial_data, extract_financial_metrics")
    print(f"๐Ÿ”— MCP endpoint: http://{host}:{port}/mcp")
    
    # โœ… Monkeypatch uvicorn.Config to use our port
    import uvicorn
    original_config_init = uvicorn.Config.__init__
    
    def patched_init(self, *args, **kwargs):
        kwargs['host'] = host
        kwargs['port'] = port
        return original_config_init(self, *args, **kwargs)
    
    uvicorn.Config.__init__ = patched_init
    
    # โœ… Run FastMCP with SSE transport + custom /mcp endpoint
    # Add stateless HTTP endpoint for direct tool calls
    from starlette.applications import Starlette
    from starlette.routing import Mount, Route
    from starlette.responses import JSONResponse
    from mcp.server.sse import SseServerTransport
    import anyio
    
    async def handle_mcp_post(request):
        """Handle direct JSON-RPC POST requests to /mcp endpoint"""
        try:
            json_data = await request.json()
            method = json_data.get("method")
            params = json_data.get("params", {})
            
            if method == "tools/call":
                tool_name = params.get("name")
                arguments = params.get("arguments", {})
                
                # Call the tool directly
                if tool_name == "search_company":
                    result = search_company(**arguments)
                elif tool_name == "get_company_info":
                    result = get_company_info(**arguments)
                elif tool_name == "get_company_filings":
                    result = get_company_filings(**arguments)
                elif tool_name == "get_financial_data":
                    result = get_financial_data(**arguments)
                elif tool_name == "extract_financial_metrics":
                    result = extract_financial_metrics(**arguments)
                elif tool_name == "get_latest_financial_data":
                    result = get_latest_financial_data(**arguments)
                elif tool_name == "advanced_search_company":
                    result = advanced_search_company(**arguments)
                else:
                    return JSONResponse({"jsonrpc": "2.0", "id": json_data.get("id"), "error": {"code": -32601, "message": f"Unknown tool: {tool_name}"}}, status_code=200)
                
                # Return MCP-formatted response with JSON serialization
                import json as json_module
                return JSONResponse({
                    "jsonrpc": "2.0",
                    "id": json_data.get("id"),
                    "result": {
                        "content": [{"type": "text", "text": json_module.dumps(result, ensure_ascii=False)}]
                    }
                }, status_code=200)
            elif method == "tools/list":
                return JSONResponse({
                    "jsonrpc": "2.0",
                    "id": json_data.get("id"),
                    "result": {"tools": []}
                }, status_code=200)
            else:
                return JSONResponse({"jsonrpc": "2.0", "id": json_data.get("id"), "error": {"code": -32601, "message": f"Unknown method: {method}"}}, status_code=200)
        except Exception as e:
            import traceback
            traceback.print_exc()
            return JSONResponse({"jsonrpc": "2.0", "id": 1, "error": {"code": -32603, "message": str(e)}}, status_code=500)
    
    async def run_custom_sse():
        sse = SseServerTransport("/messages/")
        
        async def handle_sse(request):
            async with sse.connect_sse(request.scope, request.receive, request._send) as streams:
                await mcp._mcp_server.run(
                    streams[0],
                    streams[1],
                    mcp._mcp_server.create_initialization_options(),
                )
        
        starlette_app = Starlette(
            debug=False,
            routes=[
                Route("/sse", endpoint=handle_sse),
                Mount("/messages/", app=sse.handle_post_message),
                Route("/mcp", endpoint=handle_mcp_post, methods=["POST"]),  # Custom stateless endpoint
            ],
        )
        
        config = uvicorn.Config(
            starlette_app,
            host=host,
            port=port,
            log_level="info",
        )
        server = uvicorn.Server(config)
        await server.serve()
    
    anyio.run(run_custom_sse)