File size: 22,463 Bytes
abf5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import json

def extract_last_three_with_fallback(data_list):
    # 定义年份范围(当前最新是 FY2025,所以前三年是 2025, 2024, 2023)
    years = [2025, 2024, 2023]
    
    # 构建 period 映射:按优先级
    priority_levels = [
        ("FY", [f"FY{y}" for y in years]),
        ("Q4", [f"{y}Q4" for y in years]),
        ("Q3", [f"{y}Q3" for y in years]),
        ("Q2", [f"{y}Q2" for y in years]),
        ("Q1", [f"{y}Q1" for y in years]),
    ]
    
    # 转为字典便于查找
    data_map = {item["period"]: item for item in data_list if "period" in item}
    
    # 按优先级尝试
    for level_name, periods in priority_levels:
        records = []
        valid = True
        
        for period in periods:
            item = data_map.get(period)
            if item is None or item.get("total_revenue") is None:
                valid = False
                break
            # 提取关键字段
            clean_item = {
                "period": period,
                "fiscal_year": int(period[:4]) if level_name != "FY" else int(period[2:]),
                "level": level_name,
                "total_revenue": item["total_revenue"],
                "net_income": item.get("net_income"),
                "earnings_per_share": item.get("earnings_per_share"),
                "operating_expenses": item.get("operating_expenses"),
                "operating_cash_flow": item.get("operating_cash_flow"),
                "source_url": item.get("source_url")
            }
            records.append(clean_item)
        
        if valid:
            # 找到完整三年数据,返回
            return records
    
    # 如果所有层级都不完整,可选择返回最高优先级中有效的部分(或抛异常)
    # 这里我们返回最高优先级中非空的记录(保守策略)
    for level_name, periods in priority_levels:
        records = []
        for period in periods:
            item = data_map.get(period)
            if item and item.get("total_revenue") is not None:
                clean_item = {
                    "period": period,
                    "fiscal_year": int(period[:4]) if level_name != "FY" else int(period[2:]),
                    "level": level_name,
                    "total_revenue": item["total_revenue"],
                    "net_income": item.get("net_income"),
                    "earnings_per_share": item.get("earnings_per_share"),
                    "operating_expenses": item.get("operating_expenses"),
                    "operating_cash_flow": item.get("operating_cash_flow"),
                    "source_url": item.get("source_url")
                }
                records.append(clean_item)
        if records:
            return records  # 返回第一个有数据的层级(即使不全)
    
    return []  # 完全无数据


def format_number(value):
    """将大数字格式化为 $XM 或 $XB"""
    if value >= 1_000_000_000:
        return f"${value / 1_000_000_000:.2f}B".replace(".00B", "B").replace(".0B", "B")
    elif value >= 1_000_000:
        return f"${value / 1_000_000:.1f}M".replace(".0M", "M")
    else:
        return f"${value:,.0f}"

def format_eps(value):
    """EPS 保留两位小数"""
    return f"${value:.2f}"

def safe_int(val):
    """安全转换为 int,支持字符串或 None"""
    if val is None:
        return 0
    try:
        return int(float(val))  # 兼容字符串或 float
    except (ValueError, TypeError):
        return 0

def calculate_change(current, previous):
    """计算同比变化百分比,返回如 '+12.4%' 或 '-3.2%'"""
    if previous == 0:
        return "+0.0%" if current >= 0 else "-0.0%"
    change = (current - previous) / abs(previous) * 100
    sign = "+" if change >= 0 else "-"
    return f"{sign}{abs(change):.1f}%"

def build_financial_metrics_three_year_data(three_year_data):
    # 确保按 fiscal_year 降序排列(最新在前)
    sorted_data = sorted(three_year_data, key=lambda x: x["fiscal_year"], reverse=True)
    if len(sorted_data) < 2:
        raise ValueError("至少需要两年数据来计算同比变化")

    latest = sorted_data[0]
    previous = sorted_data[1]

    # 提取并转为 int
    rev_curr = safe_int(latest.get("total_revenue"))
    rev_prev = safe_int(previous.get("total_revenue"))

    net_curr = safe_int(latest.get("net_income"))
    net_prev = safe_int(previous.get("net_income"))

    eps_curr = float(latest.get("earnings_per_share", 0) or 0)
    eps_prev = float(previous.get("earnings_per_share", 0) or 0)

    opex_curr = safe_int(latest.get("operating_expenses"))
    opex_prev = safe_int(previous.get("operating_expenses"))

    cash_curr = safe_int(latest.get("operating_cash_flow"))
    cash_prev = safe_int(previous.get("operating_cash_flow"))

    metrics = [
        {
            "label": "Total Revenue",
            "value": format_number(rev_curr),
            "change": calculate_change(rev_curr, rev_prev),
            "color": "green" if rev_curr >= rev_prev else "red"
        },
        {
            "label": "Net Income",
            "value": format_number(net_curr),
            "change": calculate_change(net_curr, net_prev),
            "color": "green" if net_curr >= net_prev else "red"
        },
        {
            "label": "Earnings Per Share",
            "value": format_eps(eps_curr),
            "change": calculate_change(eps_curr, eps_prev),
            "color": "green" if eps_curr >= eps_prev else "red"
        },
        {
            "label": "Operating Expenses",
            "value": format_number(opex_curr),
            "change": calculate_change(opex_curr, opex_prev),
            "color": "green" if opex_curr >= opex_prev else "red"
        },
        {
            "label": "Cash Flow",
            "value": format_number(cash_curr),
            "change": calculate_change(cash_curr, cash_prev),
            "color": "green" if cash_curr >= cash_prev else "red"
        }
    ]

    return metrics
# 假设你的原始数据变量名为 raw_data(即你提供的大列表)
# raw_data = [ {...}, ... ]

# 执行
# result = extract_last_three_with_fallback(raw_data)

# # 输出 JSON
# json_output = json.dumps(result, indent=2)
# print(json_output)

# ==========

from collections import defaultdict
import re

def parse_period(period):
    """解析 period 字符串,返回 (year, type, quarter)"""
    if period.startswith('FY'):
        year = int(period[2:])
        return year, 'FY', None
    elif re.match(r'Q[1-4]-\d{4}', period):
        q, year = period.split('-')
        return int(year), 'Q', int(q[1])
    else:
        raise ValueError(f"Unknown period format: {period}")

def get_best_value_for_year(year_data, key):
    """
    year_data: dict like {'FY': value, 'Q1': val, 'Q2': val, ...}
    返回该财年该指标的最佳可用值(优先 FY,其次 Q4->Q3->Q2->Q1)
    """
    if year_data.get('FY') is not None:
        return year_data['FY']
    # 否则从 Q4 到 Q1 找第一个非 None
    for q in ['Q4', 'Q3', 'Q2', 'Q1']:
        if year_data.get(q) is not None:
            return year_data[q]
    return None
# def get_yearly_data(data_json):
#     metrics_list = data_json['metrics']
    
#     # 按年份组织数据:year -> { 'FY': {...}, 'Q1': {...}, ... }
#     yearly_data = "N/A"
    
#     for metric in metrics_list:
#         period = metric['period']
#         year, ptype, quarter = parse_period(period)
#         if ptype == 'FY':
#             yearly_data = f"{year} {ptype}"
#         else:
#             yearly_data = f"{year} {ptype} Q{quarter}"
#     return yearly_data
import re

def parse_period_year_data(period):
    """
    支持以下格式:
    - FY2025
    - Q1-2025
    - 2025Q1  (新增支持)
    """
    if not isinstance(period, str):
        return None, None, None

    # 格式 1: FY2025
    if period.startswith('FY'):
        try:
            year = int(period[2:])
            return year, 'FY', None
        except ValueError:
            pass

    # 格式 2: Q1-2025
    match = re.match(r'Q([1-4])-(\d{4})', period)
    if match:
        quarter = int(match.group(1))
        year = int(match.group(2))
        return year, 'Q', quarter

    # 格式 3: 2025Q1 (新增)
    match = re.match(r'(\d{4})Q([1-4])', period)
    if match:
        year = int(match.group(1))
        quarter = int(match.group(2))
        return year, 'Q', quarter

    # 无法解析
    return None, None, None
def get_yearly_data(data_json):
    metrics_list = data_json.get('metrics', [])
    latest_desc = "N/A"
    
    for metric in metrics_list:
        period = metric.get('period')
        if not period:
            continue
        year, ptype, quarter = parse_period_year_data(period)
        if year is None:
            continue  # 跳过无法解析的
        
        if ptype == 'FY':
            desc = f"{year} FY"
        else:
            desc = f"{year} Q{quarter}"
        
        # 简单认为列表顺序是时间顺序,最后一条最新
        latest_desc = desc
    
    return latest_desc
def parse_period_yoy(period):
    """解析 period 为 (year, type, quarter)"""
    if period.startswith('FY'):
        year = int(period[2:])
        return year, 'FY', None
    elif re.match(r'Q[1-4]-\d{4}', period):
        q_part, year_str = period.split('-')
        return int(year_str), 'Q', int(q_part[1])
    else:
        # 忽略无法解析的 period
        return None, None, None

def get_best_value_for_year_yoy(values_dict, key):
    """
    从年度数据中获取指定指标的最佳值(优先 FY,其次 Q4 → Q1)
    values_dict: {'FY': {...}, 'Q1': {...}, ...}
    """
    order = ['FY', 'Q4', 'Q3', 'Q2', 'Q1']
    for q in order:
        metric = values_dict.get(q)
        if metric is not None and isinstance(metric, dict):
            val = metric.get(key)
            if val is not None:
                return val
    return None
import json
def calculate_yoy_comparison(data_json):
    metrics_list = data_json.get('metrics', [])
    if not metrics_list:
        return []
    if not isinstance(metrics_list, list):
        return []
    if not isinstance(metrics_list[0], dict):
        return []
    # 安全处理:确保每个 metric 是字典(防止双重 JSON 编码)
    cleaned_metrics = []
    for i, metric in enumerate(metrics_list):
        if isinstance(metric, str):
            try:
                metric = json.loads(metric)
                # metric = metric
            except Exception as e:
                raise ValueError(f"Failed to parse metrics[{i}] as JSON string: {metric}") from e
        if not isinstance(metric, dict):
            raise TypeError(f"metrics[{i}] is not a dictionary or valid JSON string. Type: {type(metric)}")
        cleaned_metrics.append(metric)

    # 按年份组织数据:year -> { 'FY': {...}, 'Q1': {...}, ... }
    yearly_data = defaultdict(lambda: defaultdict(dict))
    
    for metric in cleaned_metrics:
        period = metric.get('period')
        if not period:
            continue  # 跳过没有 period 的条目
        
        year, ptype, quarter = parse_period_yoy(period)
        if year is None:
            continue  # 跳过无法解析的 period
        
        if ptype == 'FY':
            yearly_data[year]['FY'] = metric
        elif ptype == 'Q':
            yearly_data[year][f'Q{quarter}'] = metric
        # 否则忽略

    # 获取所有年份并排序(最新在前)
    years = sorted(yearly_data.keys(), reverse=True)
    if len(years) < 2:
        raise ValueError("至少需要两个财年的数据")

    latest_year = years[0]
    prev_year = years[1]

    result = []
    indicators = [
        ("Total Revenue", "total_revenue"),
        ("Net Income", "net_income"),
        ("Earnings Per Share", "earnings_per_share"),
        ("Operating Expenses", "operating_expenses"),
        ("Cash Flow", "operating_cash_flow")
    ]

    def format_value(val):
        if val is None:
            return "N/A"
        try:
            val = float(val)
        except (TypeError, ValueError):
            return "N/A"
        abs_val = abs(val)
        if abs_val >= 1e9:
            return f"${val / 1e9:.2f}B"
        elif abs_val >= 1e6:
            return f"${val / 1e6:.1f}M"
        elif abs_val >= 1e3:
            return f"${val / 1e3:.1f}K"
        else:
            return f"${val:.2f}"

    for label, key in indicators:
        # 获取本财年最佳值
        current_val = get_best_value_for_year_yoy(yearly_data[latest_year], key)
        # 获取去年财年最佳值
        prev_val = get_best_value_for_year_yoy(yearly_data[prev_year], key)

        if current_val is None or prev_val is None or prev_val == 0:
            change_str = "N/A"
            color = "N/A"
        else:
            try:
                current_val = float(current_val)
                prev_val = float(prev_val)
            except (TypeError, ValueError):
                change_str = "N/A"
                color = "N/A"
            else:
                change_pct = (current_val - prev_val) / abs(prev_val) * 100
                if change_pct > 0:
                    change_str = f"+{change_pct:.1f}%"
                    color = "green"
                elif change_pct < 0:
                    change_str = f"{change_pct:.1f}%"
                    color = "red"
                else:
                    change_str = "0.0%"
                    color = "N/A"

        formatted_value = format_value(current_val)

        result.append({
            "label": label,
            "value": formatted_value,
            "change": change_str,
            "color": color
        })

    return result
# def parse_period_yoy(period):
#     """解析 period 为 (year, type, quarter)"""
#     if period.startswith('FY'):
#         year = int(period[2:])
#         return year, 'FY', None
#     elif re.match(r'Q[1-4]-\d{4}', period):
#         q_part, year_str = period.split('-')
#         return int(year_str), 'Q', int(q_part[1])
#     else:
#         # 忽略无法解析的 period
#         return None, None, None
# def calculate_yoy_comparison(data_json):
#     metrics_list = data_json['metrics']
    
#     # 按年份组织数据:year -> { 'FY': {...}, 'Q1': {...}, ... }
#     yearly_data = defaultdict(lambda: defaultdict(dict))
    
#     for metric in metrics_list:
#         period = metric['period']
#         year, ptype, quarter = parse_period_yoy(period)
#         if ptype == 'FY':
#             yearly_data[year]['FY'] = metric
#         else:
#             yearly_data[year][f'Q{quarter}'] = metric

#     # 获取所有年份并排序(最新在前)
#     years = sorted(yearly_data.keys(), reverse=True)
#     if len(years) < 2:
#         raise ValueError("至少需要两个财年的数据")

#     latest_year = years[0]
#     prev_year = years[1]

#     result = []
#     indicators = [
#         ("Total Revenue", "total_revenue"),
#         ("Net Income", "net_income"),
#         ("Earnings Per Share", "earnings_per_share"),
#         ("Operating Expenses", "operating_expenses"),
#         ("Cash Flow", "operating_cash_flow")
#     ]

#     def format_value(val):
#         if val is None:
#             return "N/A"
#         abs_val = abs(val)
#         if abs_val >= 1e9:
#             return f"${val / 1e9:.2f}B"
#         elif abs_val >= 1e6:
#             return f"${val / 1e6:.1f}M"
#         elif abs_val >= 1e3:
#             return f"${val / 1e3:.1f}K"
#         else:
#             return f"${val:.2f}"

#     for label, key in indicators:
#         # 获取本财年最佳值
#         current_val = get_best_value_for_year(
#             {k: v.get(key) for k, v in yearly_data[latest_year].items()},
#             key
#         )
#         # 获取去年财年最佳值
#         prev_val = get_best_value_for_year(
#             {k: v.get(key) for k, v in yearly_data[prev_year].items()},
#             key
#         )

#         if current_val is None or prev_val is None or prev_val == 0:
#             change_str = "N/A"
#             color = "N/A"
#         else:
#             change_pct = (current_val - prev_val) / abs(prev_val) * 100
#             if change_pct > 0:
#                 change_str = f"+{change_pct:.1f}%"
#                 color = "green"
#             elif change_pct < 0:
#                 change_str = f"{change_pct:.1f}%"
#                 color = "red"
#             else:
#                 change_str = "0.0%"
#                 color = "N/A"

#         formatted_value = format_value(current_val)

#         result.append({
#             "label": label,
#             "value": formatted_value,
#             "change": change_str,
#             "color": color
#         })

#     return result




import re
import json
from collections import defaultdict

def parse_period_three_year(period):
    """解析 period 为 (year, type, quarter)"""
    if period.startswith('FY'):
        year = int(period[2:])
        return year, 'FY', None
    elif re.match(r'Q[1-4]-\d{4}', period):
        q_part, year_str = period.split('-')
        return int(year_str), 'Q', int(q_part[1])
    else:
        # 忽略无法解析的 period
        return None, None, None

def extract_financial_table(data_json):
    metrics_list = data_json.get('metrics', [])
    if not metrics_list:
        return []
    if not isinstance(metrics_list, list):
        return []
    if not isinstance(metrics_list[0], dict):
        return []
    # === 安全清洗:确保每个 metric 是字典 ===
    cleaned_metrics = []
    for i, metric in enumerate(metrics_list):
        if isinstance(metric, str):
            try:
                metric = json.loads(metric)
            except Exception as e:
                raise ValueError(f"Failed to parse metrics[{i}] as JSON string: {metric}") from e
        if not isinstance(metric, dict):
            raise TypeError(f"metrics[{i}] is not a dictionary or valid JSON string. Type: {type(metric)}")
        cleaned_metrics.append(metric)

    # 按年份组织所有报告:year -> { 'FY': metric_dict, 'Q1': ..., 'Q2': ... }
    yearly_reports = defaultdict(dict)
    all_years = set()

    for metric in cleaned_metrics:
        period = metric.get('period')
        if not period:
            continue  # 跳过无 period 的条目
        
        year, ptype, quarter = parse_period_three_year(period)
        if year is None:
            continue
        all_years.add(year)
        if ptype == 'FY':
            yearly_reports[year]['FY'] = metric
        elif ptype == 'Q':
            yearly_reports[year][f'Q{quarter}'] = metric

    if not all_years:
        raise ValueError("未找到任何有效报告期")

    # 取最近三个财年(倒序)
    sorted_years = sorted(all_years, reverse=True)[:3]
    # 补齐到3年(如果不足)
    while len(sorted_years) < 3:
        sorted_years.append(None)

    # 为每个年份获取最佳值(优先 FY,其次 Q4→Q1)
    def get_best_value(year, key):
        if year is None:
            return None
        reports = yearly_reports.get(year, {})
        # 确保 reports[q] 是 dict
        fy_report = reports.get('FY')
        if fy_report and isinstance(fy_report, dict):
            fy_val = fy_report.get(key)
            if fy_val is not None:
                return fy_val
        # 否则 Q4 → Q1
        for q in ['Q4', 'Q3', 'Q2', 'Q1']:
            q_report = reports.get(q)
            if q_report and isinstance(q_report, dict):
                q_val = q_report.get(key)
                if q_val is not None:
                    return q_val
        return None

    # 指标定义
    indicators = [
        ("Total", "total_revenue"),
        ("Net Income", "net_income"),
        ("Earnings Per Share", "earnings_per_share"),
        ("Operating Expenses", "operating_expenses"),
        ("Cash Flow", "operating_cash_flow")
    ]

    # 格式化函数
    def format_to_m(value):
        if value is None:
            return "N/A"
        try:
            val = float(value)
        except (TypeError, ValueError):
            return "N/A"
        val_in_m = val / 1e6
        if abs(val_in_m - round(val_in_m)) < 1e-6:
            return f"{int(round(val_in_m))}M"
        else:
            return f"{val_in_m:.1f}M"

    def format_eps(value):
        if value is None:
            return "N/A"
        try:
            val = float(value)
        except (TypeError, ValueError):
            return "N/A"
        return f"{val:.2f}"

    # 构建 list_data
    header = ["Category"] + [f"{year}/FY" for year in sorted_years if year is not None]
    list_data = [header]

    for label, key in indicators:
        row = [label]
        for year in sorted_years:
            if year is None:
                row.append("N/A")
            else:
                val = get_best_value(year, key)
                if label == "Earnings Per Share":
                    row.append(format_eps(val))
                else:
                    row.append(format_to_m(val))
        list_data.append(row)

    # 构建 yoy_rates
    valid_years = [y for y in sorted_years if y is not None]
    yoy_header = ["Category"]
    yoy_pairs = []

    if len(valid_years) >= 2:
        yoy_header.append(f"{valid_years[0]}/FY")
        yoy_pairs.append((valid_years[0], valid_years[1]))
    if len(valid_years) >= 3:
        yoy_header.append(f"{valid_years[1]}/FY")
        yoy_pairs.append((valid_years[1], valid_years[2]))

    yoy_rates = [yoy_header]

    for label, key in indicators:
        row = [label]
        for curr_y, prev_y in yoy_pairs:
            curr_val = get_best_value(curr_y, key)
            prev_val = get_best_value(prev_y, key)

            if curr_val is None or prev_val is None or prev_val == 0:
                row.append("N/A")
            else:
                try:
                    curr_val = float(curr_val)
                    prev_val = float(prev_val)
                except (TypeError, ValueError):
                    row.append("N/A")
                else:
                    pct = (curr_val - prev_val) / abs(prev_val) * 100
                    if pct >= 0:
                        row.append(f"+{pct:.2f}%")
                    else:
                        row.append(f"{pct:.2f}%")
        yoy_rates.append(row)

    return {
        "list_data": list_data,
        "yoy_rates": yoy_rates
    }