File size: 14,810 Bytes
f71610e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import json
import time
from .mcp_client import MCP_Client
BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
MODEL = "qwen3-max"
TOKEN = "sk-ef26097310ec45c184e8d84b31ea9356"
# Alpha Vantage MCP配置
MCP_CONFIG = {
"mcpServers": {
"alpha-vantage": {
"command": "npx",
"args": ["alpha-ventage-mcp"],
"env": {
"ALPHA_VANTAGE_API_KEY": "97Q9TT7I6J9ZOLDS"
}
}
}
}
def extract_stock_symbol(user_input: str) -> str:
"""
从用户输入中提取股票代码
支持多种格式:
- "查询阿里巴巴股票" -> BABA
- "查询AAPL股票" -> AAPL
- "我想了解MSFT的股价" -> MSFT
- "BABA股价如何" -> BABA
"""
# 预定义一些常见股票代码的映射
stock_mapping = {
"阿里巴巴": "BABA",
"阿里": "BABA",
"腾讯": "TCEHY",
"微软": "MSFT",
"苹果": "AAPL",
"谷歌": "GOOGL",
"亚马逊": "AMZN",
"特斯拉": "TSLA",
"英伟达": "NVDA",
"百度": "BIDU",
"京东": "JD",
"拼多多": "PDD"
}
# 检查预定义映射
for chinese_name, symbol in stock_mapping.items():
if chinese_name in user_input:
return symbol
# 尝试直接匹配常见的股票代码格式 (如 AAPL, MSFT 等)
import re
# 匹配常见的股票代码格式
patterns = [
r'\b([A-Z]{1,5})\b', # 大写字母组成的股票代码
r'股票代码[是为]?([A-Z]{1,5})',
r'([A-Z]{1,5})股票'
]
for pattern in patterns:
match = re.search(pattern, user_input)
if match:
symbol = match.group(1)
# 验证是否为有效的股票代码格式
if 1 <= len(symbol) <= 5 and symbol.isalpha():
return symbol
# 默认返回阿里巴巴
return "BABA"
def get_stock_price(symbol: str):
"""获取股票价格"""
client = MCP_Client(MCP_CONFIG)
if not client.initialize():
raise Exception("MCP初始化失败")
try:
result = client.call_tool("get_stock_price", {"symbol": symbol})
client.close()
return result
except Exception as e:
client.close()
raise e
def get_company_overview(symbol: str):
"""获取公司概况"""
client = MCP_Client(MCP_CONFIG)
if not client.initialize():
raise Exception("MCP初始化失败")
try:
result = client.call_tool("get_company_overview", {"symbol": symbol})
client.close()
return result
except Exception as e:
client.close()
raise e
def get_daily_time_series(symbol: str):
"""获取每日时间序列数据"""
client = MCP_Client(MCP_CONFIG)
if not client.initialize():
raise Exception("MCP初始化失败")
try:
result = client.call_tool("get_daily_time_series", {"symbol": symbol})
client.close()
return result
except Exception as e:
client.close()
raise e
def get_forex_rate(from_currency: str = "USD", to_currency: str = "CNY"):
"""获取外汇汇率"""
client = MCP_Client(MCP_CONFIG)
if not client.initialize():
raise Exception("MCP初始化失败")
try:
result = client.call_tool("get_forex_rate", {
"from_currency": from_currency,
"to_currency": to_currency
})
client.close()
return result
except Exception as e:
client.close()
raise e
def get_tools_for_stock(symbol: str):
"""根据股票代码生成工具列表"""
return [
{
"name": "get_stock_price",
"description": "获取股票价格",
"params": {"symbol": symbol},
},
{
"name": "get_company_overview",
"description": "获取公司概况",
"params": {"symbol": symbol},
},
{
"name": "get_daily_time_series",
"description": "获取每日时间序列数据",
"params": {"symbol": symbol},
},
{
"name": "get_forex_rate",
"description": "获取外汇汇率",
"params": {"from_currency": "USD", "to_currency": "CNY"},
}
]
def call_llm(prompt: str):
"""模拟调用大模型的函数(你可以替换为真实请求)"""
import requests
headers = {
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json"
}
data = {
"model": MODEL,
"messages": [{"role": "user", "content": prompt}],
"stream": True # 启用流式响应
}
response = requests.post(f"{BASE_URL}/chat/completions", headers=headers, json=data, stream=True)
for line in response.iter_lines():
if line:
yield line.decode('utf-8')
def get_stock_data_example(symbol: str):
"""示例函数:获取股票数据的简化调用方式"""
try:
# 获取股票价格
price_data = get_stock_price(symbol)
print(f"股票价格数据: {price_data}")
# 获取公司概况
overview_data = get_company_overview(symbol)
print(f"公司概况数据: {overview_data}")
# 获取每日时间序列
time_series_data = get_daily_time_series(symbol)
print(f"时间序列数据: {time_series_data}")
# 获取外汇汇率
forex_data = get_forex_rate()
print(f"外汇汇率数据: {forex_data}")
return {
"price": price_data,
"overview": overview_data,
"time_series": time_series_data,
"forex": forex_data
}
except Exception as e:
print(f"获取股票数据时出错: {str(e)}")
raise e
def process_tool_analysis(user_input: str, history: list):
"""
处理工具分析的主要逻辑
- user_input: str
- history: list of {"role": ..., "content": ...}
Returns generator for streaming.
"""
if not user_input.strip():
yield "", history
return
# 添加用户消息到历史
history.append({"role": "user", "content": user_input})
try:
# 从用户输入中提取股票代码
stock_symbol = extract_stock_symbol(user_input)
# 根据股票代码生成工具列表
tools_to_test = get_tools_for_stock(stock_symbol)
# 创建MCP客户端
client = MCP_Client(MCP_CONFIG)
# 初始化MCP会话
if not client.initialize():
error_msg = "❌ MCP初始化失败"
history.append({"role": "assistant", "content": error_msg})
yield "", history
return
# 收集所有工具的查询结果
all_results = []
# 依次调用每个工具
for i, tool in enumerate(tools_to_test, 1):
# 添加工具标题(使用HTML实现可折叠效果,默认折叠)
tool_content = f'''<details>
<summary class="tool-header querying" style="background-color: #f0f8ff; border: 1px solid #d0e0f0; border-radius: 5px; padding: 10px; margin: 10px 0; color: #1e40af; font-weight: bold; cursor: pointer;">
[MCP] <span class="status-tag querying">查询中</span> 🔧 工具 {i}/{len(tools_to_test)}: {tool['name']} ({tool['description']})
</summary>
<div style="border: 1px solid #d0e0f0; border-top: none; border-radius: 0 0 5px 5px; padding: 15px; background-color: #f8fafc; margin-bottom: 10px;">'''
history.append({"role": "assistant", "content": tool_content})
yield "", history
try:
result = client.call_tool(tool["name"], tool["params"])
# 解析结果
if isinstance(result, dict) and "content" in result:
content = result["content"]
if isinstance(content, list) and len(content) > 0:
text_content = content[0].get("text", "") if isinstance(content[0], dict) else str(content[0])
# 立即调用模型总结这个信息内容
summary_prompt = f"给我总结这个信息内容:{text_content}"
# 更新状态为分析中
# 找到完整的summary标签并更新状态
start_idx = history[-1]["content"].find('<summary')
end_idx = history[-1]["content"].find('</summary>') + len('</summary>')
if start_idx != -1 and end_idx != -1:
summary_content = history[-1]["content"][start_idx:end_idx]
# 更新工具标题的类名和状态文本(添加过渡效果)
updated_summary = summary_content.replace('tool-header querying',
'tool-header analyzing').replace(
'status-tag querying', 'status-tag analyzing').replace('查询中', '分析中')
history[-1]["content"] = history[-1]["content"].replace(summary_content, updated_summary)
yield "", history
# 流式显示模型处理结果(在可折叠面板内部)
model_summary = ""
# 移除所有冗余提示文本,直接显示分析结果区域
history[-1]["content"] += "<div id='analysis-result'>"
yield "", history
for chunk in call_llm(summary_prompt):
if not chunk or chunk == "[DONE]":
continue
if chunk.startswith("data: "):
chunk = chunk[6:]
try:
response_data = json.loads(chunk)
delta = response_data.get("choices", [{}])[0].get("delta", {})
content = delta.get("content", "")
if content:
model_summary += content
# 更新分析结果(在可折叠面板内部)
history[-1]["content"] = history[-1]["content"][0:history[-1]["content"].find(
"<div id='analysis-result'>") + 26] + model_summary
yield "", history
except json.JSONDecodeError:
continue # 忽略无效 JSON
history[-1]["content"] += "</div>"
result_msg = f"✅ {tool['name']}: {model_summary}"
all_results.append(f"{tool['description']}: {model_summary}")
# 添加最终结果到历史(在可折叠面板内部),移除所有冗余提示文本
history[-1]["content"] += f"<p><strong>分析结果:</strong></p><p>{result_msg}</p>"
# 更新状态为已完成(添加过渡效果)
# 找到完整的summary标签并更新状态
start_idx = history[-1]["content"].find('<summary')
end_idx = history[-1]["content"].find('</summary>') + len('</summary>')
if start_idx != -1 and end_idx != -1:
summary_start = history[-1]["content"][start_idx:end_idx]
updated_summary = summary_start.replace('tool-header analyzing',
'tool-header completed').replace(
'status-tag analyzing', 'status-tag completed').replace('分析中', '已完成')
history[-1]["content"] = history[-1]["content"].replace(summary_start, updated_summary)
# 关闭可折叠面板
history[-1]["content"] += "</div>\n</details>"
except Exception as e:
error_msg = f"❌ {tool['name']} 查询失败: {str(e)}"
history.append({"role": "assistant", "content": error_msg})
yield "", history
# 关闭可折叠面板(即使是错误情况)
history[-1]["content"] += "</div>\n</details>"
all_results.append(f"{tool['name']}: 查询失败 - {str(e)}")
# 添加短暂延迟以改善用户体验
time.sleep(0.5)
# 关闭MCP连接
client.close()
# 将所有结果汇总后传递给AI模型进行总结
final_summary_header = '''<div style="border: 2px solid #4CAF50; border-radius: 8px; padding: 20px; background-color: #f8fff8; margin: 15px 0;">
<h3 style="color: #2E7D32; text-align: center; margin-top: 0;">📈 最终总结</h3>'''
history.append({"role": "assistant", "content": final_summary_header})
yield "", history
summary_msg = "📊 正在分析所有数据并生成总结..."
history.append({"role": "assistant", "content": summary_msg})
yield "", history
# 构造给AI模型的提示
all_results_text = "\n".join(all_results)
summary_prompt = f"""用户问题: {user_input}
收集到的金融数据:
{all_results_text}
请根据以上数据回答用户问题,提供简洁明了的总结。"""
# 调用AI模型进行总结
bot_response = ""
for chunk in call_llm(summary_prompt):
if not chunk or chunk == "[DONE]":
continue
if chunk.startswith("data: "):
chunk = chunk[6:]
try:
response_data = json.loads(chunk)
delta = response_data.get("choices", [{}])[0].get("delta", {})
content = delta.get("content", "")
if content:
bot_response += content
# 更新累积历史记录中的最后一条消息,实现流式显示
history[-1]["content"] = "📊 正在分析所有数据并生成总结...\n" + bot_response
yield "", history
except json.JSONDecodeError:
continue # 忽略无效 JSON
# 最终完整历史
final_footer = "</div>"
history.append({"role": "assistant", "content": bot_response + final_footer})
yield "", history
except Exception as e:
error_msg = f"❌ 错误: {str(e)}"
history.append({"role": "assistant", "content": error_msg})
yield "", history
|