Spaces:
Running
Running
File size: 14,835 Bytes
0491e54 58ca1d0 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 f0cdd58 0491e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
"""
UI Event Handlers for FocusFlow.
"""
import os
import gradio as gr
import pandas as pd
from agent import FocusAgent, MockFocusAgent
class UIHandlers:
def __init__(self, task_manager, file_monitor, metrics_tracker, focus_monitor, linear_client=None):
self.task_manager = task_manager
self.file_monitor = file_monitor
self.metrics_tracker = metrics_tracker
self.focus_monitor = focus_monitor
self.linear_client = linear_client
# State
self.monitoring_active = False
self.timer_active = False
self.check_interval = 30 # Default
def get_voice_status_ui(self) -> str:
"""Get voice integration status for UI display."""
from voice import get_voice_status
return get_voice_status()
def initialize_agent(self, ai_provider: str) -> tuple:
"""
Initialize the AI agent.
Returns: (status_message, actual_provider_display)
"""
try:
use_mock = False
focus_agent = None
if ai_provider == "anthropic":
api_key = os.getenv("DEMO_ANTHROPIC_API_KEY") or os.getenv("ANTHROPIC_API_KEY")
if not api_key:
use_mock = True
else:
try:
focus_agent = FocusAgent(provider="anthropic", api_key=api_key)
key_type = "demo" if os.getenv("DEMO_ANTHROPIC_API_KEY") else "user"
self.focus_monitor.set_agent(focus_agent)
return (f"β
Anthropic Claude initialized successfully ({key_type} key)",
f"**AI Provider:** `ANTHROPIC (Claude)`")
except Exception as e:
print(f"β οΈ Anthropic API error: {e}")
use_mock = True
elif ai_provider == "openai":
api_key = os.getenv("DEMO_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY")
if not api_key:
use_mock = True
else:
try:
focus_agent = FocusAgent(provider="openai", api_key=api_key)
key_type = "demo" if os.getenv("DEMO_OPENAI_API_KEY") else "user"
self.focus_monitor.set_agent(focus_agent)
return (f"β
OpenAI GPT-4 initialized successfully ({key_type} key)",
f"**AI Provider:** `OPENAI (GPT-4o)`")
except Exception as e:
print(f"β οΈ OpenAI API error: {e}")
use_mock = True
elif ai_provider == "gemini":
api_key = os.getenv("DEMO_GEMINI_API_KEY") or os.getenv("GEMINI_API_KEY")
if not api_key:
use_mock = True
else:
try:
focus_agent = FocusAgent(provider="gemini", api_key=api_key)
key_type = "demo" if os.getenv("DEMO_GEMINI_API_KEY") else "user"
self.focus_monitor.set_agent(focus_agent)
return (f"β
Google Gemini initialized successfully ({key_type} key)",
f"**AI Provider:** `GEMINI (Flash 2.0)`")
except Exception as e:
print(f"β οΈ Gemini API error: {e}")
use_mock = True
elif ai_provider == "vllm":
try:
focus_agent = FocusAgent(
provider="vllm",
api_key=os.getenv("VLLM_API_KEY", "EMPTY"),
base_url=os.getenv("VLLM_BASE_URL", "http://localhost:8000/v1"),
model=os.getenv("VLLM_MODEL", "ibm-granite/granite-4.0-h-1b")
)
if not focus_agent.connection_healthy:
use_mock = True
else:
self.focus_monitor.set_agent(focus_agent)
return (f"β
vLLM initialized successfully!",
f"**AI Provider:** `VLLM (Local)`")
except Exception as e:
print(f"β οΈ vLLM error: {e}")
use_mock = True
# Use mock agent if no API keys or connections available
if use_mock:
focus_agent = MockFocusAgent()
self.focus_monitor.set_agent(focus_agent)
return (f"βΉοΈ Running in DEMO MODE with Mock AI (no API keys needed). Perfect for testing! π",
f"**AI Provider:** `MOCK AI (Demo Mode)`")
# Fallback
focus_agent = MockFocusAgent()
self.focus_monitor.set_agent(focus_agent)
return (f"βΉοΈ Using Mock AI for demo",
f"**AI Provider:** `MOCK AI (Fallback)`")
except Exception as e:
focus_agent = MockFocusAgent()
self.focus_monitor.set_agent(focus_agent)
return (f"βΉοΈ Using Mock AI for demo (Error: {str(e)}) π",
f"**AI Provider:** `MOCK AI (Error Fallback)`")
def reconfigure_agent(self, provider: str, api_key: str, eleven_key: str) -> tuple:
"""
Re-configure the agent with user-provided keys (Demo Mode).
"""
# Update Environment Variables
if api_key.strip():
if provider == "openai":
os.environ["OPENAI_API_KEY"] = api_key
elif provider == "anthropic":
os.environ["ANTHROPIC_API_KEY"] = api_key
elif provider == "gemini":
os.environ["GEMINI_API_KEY"] = api_key
if eleven_key.strip():
os.environ["ELEVEN_API_KEY"] = eleven_key
# Re-init voice
from voice import voice_generator
voice_generator.initialize()
# Re-initialize Agent
return self.initialize_agent(provider)
def process_onboarding(self, project_description: str) -> tuple:
"""Process onboarding and generate tasks."""
# Default UI updates for failure cases (no change to timer/monitoring)
no_update = gr.update()
if not self.focus_monitor.focus_agent:
return "β Please initialize agent first", self.get_task_dataframe(), 0, no_update, no_update, no_update, no_update
if not project_description.strip():
return "β Please describe your project", self.get_task_dataframe(), 0, no_update, no_update, no_update, no_update
# Generate tasks
tasks = self.focus_monitor.focus_agent.get_onboarding_tasks(project_description)
if not tasks:
return "β Failed to generate tasks. Check your AI provider configuration.", self.get_task_dataframe(), 0, no_update, no_update, no_update, no_update
# Reset State (Demo Mode Reset)
# We clear everything to give the user a fresh start
self.task_manager.clear_all_tasks()
self.metrics_tracker.clear_all_data()
self.stop_monitoring() # Stop backend monitoring
# Add tasks to database
for task in tasks:
self.task_manager.add_task(
title=task.get("title", "Untitled"),
description=task.get("description", ""),
estimated_duration=task.get("estimated_duration", "30 min")
)
# Return success with UI resets
# Outputs: [onboard_status, task_table, progress_bar, monitor_timer, timer_toggle_btn, timer_active_state, demo_status]
return (
f"β
Generated {len(tasks)} tasks! Go to Task Manager to start.",
self.get_task_dataframe(),
self.calculate_progress(),
gr.update(active=False), # Stop timer
gr.update(value="βΆοΈ Start Auto-Check"), # Reset button label
False, # Reset timer state
"βΉοΈ Monitoring reset (New Project)" # Update status
)
def get_task_dataframe(self):
"""Get tasks as a list for display."""
tasks = self.task_manager.get_all_tasks()
if not tasks:
return []
display_tasks = []
for task in tasks:
display_tasks.append([
task['id'],
task['title'],
task['description'],
task['status'],
task['estimated_duration']
])
return display_tasks
def calculate_progress(self) -> float:
"""Calculate overall task completion percentage."""
tasks = self.task_manager.get_all_tasks()
if not tasks:
return 0.0
completed = sum(1 for task in tasks if task['status'] == "Done")
return (completed / len(tasks)) * 100
def add_new_task(self, title: str, description: str, duration: int, status: str) -> tuple:
"""Add a new task."""
if not title.strip():
return "", "", 30, "Todo", self.get_task_dataframe(), self.calculate_progress()
duration_str = f"{duration} min"
self.task_manager.add_task(title, description, duration_str, status)
return "", "", 30, "Todo", self.get_task_dataframe(), self.calculate_progress()
def delete_task(self, task_id: str) -> tuple:
"""Delete a task by ID."""
try:
self.task_manager.delete_task(int(task_id))
return "β
Task deleted", self.get_task_dataframe(), self.calculate_progress()
except Exception as e:
return f"β Error: {str(e)}", self.get_task_dataframe(), self.calculate_progress()
def set_task_active(self, task_id: str) -> tuple:
"""Set a task as active."""
try:
self.task_manager.set_active_task(int(task_id))
return "β
Task set as active! Start working and I'll monitor your progress.", self.get_task_dataframe(), self.calculate_progress()
except Exception as e:
return f"β Error: {str(e)}", self.get_task_dataframe(), self.calculate_progress()
def mark_task_done(self, task_id: str) -> tuple:
"""Mark a task as completed."""
try:
self.task_manager.update_task(int(task_id), status="Done")
return "β
Task marked as completed! π", self.get_task_dataframe(), self.calculate_progress()
except Exception as e:
return f"β Error: {str(e)}", self.get_task_dataframe(), self.calculate_progress()
def start_monitoring(self, watch_path: str, launch_mode: str) -> tuple:
"""Start file monitoring."""
if launch_mode == "demo":
return "β File monitoring disabled in demo mode. Use the text area instead.", gr.update(active=False)
if not watch_path or not os.path.exists(watch_path):
self.monitoring_active = False
self.timer_active = False
return f"β Invalid path: {watch_path}", gr.update(active=False)
try:
self.file_monitor.start(watch_path)
self.monitoring_active = True
self.timer_active = True
return f"β
Monitoring started on: {watch_path}", gr.update(active=True)
except Exception as e:
self.monitoring_active = False
self.timer_active = False
return f"β Error: {str(e)}", gr.update(active=False)
def stop_monitoring(self) -> tuple:
"""Stop file monitoring."""
self.file_monitor.stop()
self.monitoring_active = False
self.timer_active = False
return "βΉοΈ Monitoring stopped", gr.update(active=False)
def set_check_interval(self, frequency_label: str) -> tuple:
"""Update check interval based on dropdown selection."""
frequency_map = {
"30 seconds": 30,
"1 minute": 60,
"5 minutes": 300,
"10 minutes": 600,
}
self.check_interval = frequency_map.get(frequency_label, 30)
# Return updated timer component
return (
gr.Timer(value=self.check_interval, active=self.timer_active),
f"β
Check interval set to {frequency_label}"
)
def refresh_dashboard(self) -> tuple:
"""Refresh dashboard with latest metrics."""
today_stats = self.metrics_tracker.get_today_stats()
current_streak = self.metrics_tracker.get_current_streak()
state_data = pd.DataFrame([
{"state": "On Track", "count": today_stats["on_track"]},
{"state": "Distracted", "count": today_stats["distracted"]},
{"state": "Idle", "count": today_stats["idle"]}
])
chart_data = self.metrics_tracker.get_chart_data()
weekly_data = pd.DataFrame({
"date": chart_data["dates"],
"score": chart_data["focus_scores"]
})
return (
today_stats["focus_score"],
current_streak,
today_stats["total_checks"],
state_data,
weekly_data
)
# Linear Integration
def get_linear_projects_ui(self):
"""Get Linear projects for dropdown."""
if not self.linear_client:
return gr.update(choices=[], value=None, visible=True), "β οΈ Linear client not initialized"
projects = self.linear_client.get_user_projects()
if not projects:
return gr.update(choices=[], value=None, visible=True), "β οΈ No projects found (or API key missing)"
choices = [(p['name'], p['id']) for p in projects]
return gr.update(choices=choices, value=choices[0][1] if choices else None, visible=True), f"β
Found {len(projects)} projects"
def import_linear_tasks_ui(self, project_id):
"""Import tasks from selected Linear project."""
if not self.linear_client:
return "β οΈ Linear client not initialized", self.get_task_dataframe(), self.calculate_progress()
if not project_id:
return "β Select a project first", self.get_task_dataframe(), self.calculate_progress()
tasks = self.linear_client.get_project_tasks(project_id)
if not tasks:
return "β οΈ No open tasks found in this project", self.get_task_dataframe(), self.calculate_progress()
count = 0
for t in tasks:
estimate = t.get('estimate', 30) or 30
duration_str = f"{estimate} min"
self.task_manager.add_task(
title=t['title'],
description=t.get('description', ''),
estimated_duration=duration_str,
status="Todo"
)
count += 1
return f"β
Imported {count} tasks from Linear!", self.get_task_dataframe(), self.calculate_progress()
|