File size: 25,456 Bytes
fdf5af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490576f
fdf5af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1823d
 
 
 
 
 
 
fdf5af0
 
 
 
 
 
 
39d826e
fdf5af0
 
 
39d826e
 
fdf5af0
37dab9a
fdf5af0
 
 
 
 
 
 
 
39d826e
fdf5af0
 
39d826e
fdf5af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37dab9a
fdf5af0
39d826e
fdf5af0
39d826e
 
 
fdf5af0
 
 
 
 
 
 
 
 
39d826e
 
fdf5af0
 
39d826e
fdf5af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37dab9a
fdf5af0
37dab9a
fdf5af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37dab9a
fdf5af0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import gradio as gr
import anthropic
import json
import os
from typing import Dict, List, Any
from mcp.server import Server
from mcp.types import Tool, TextContent
import asyncio

# LlamaIndex imports for RAG
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb

# Initialize Anthropic client
client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))

# ============== VECTOR DATABASE SETUP ==============

# Initialize embedding model (using HuggingFace for sponsor recognition!)
print("🔄 Loading embedding model...")
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
Settings.embed_model = embed_model
Settings.llm = None  # Disable LLM for LlamaIndex (we use Claude directly via MCP)
Settings.chunk_size = 512

# Initialize ChromaDB
chroma_client = chromadb.Client()

# Create collections for workers and gigs
workers_collection = chroma_client.get_or_create_collection("gig_workers")
gigs_collection = chroma_client.get_or_create_collection("gig_posts")

print("✅ Vector database ready!")

# ============== LOAD AND INDEX DATA ==============

def load_and_index_data():
    """Load JSON data and create vector indices"""
    
    # Load workers
    try:
        with open("workers_data.json", "r") as f:
            workers_data = json.load(f)
    except FileNotFoundError:
        workers_data = []
        print("⚠️ workers_data.json not found, using empty list")
    
    # Load gigs
    try:
        with open("gigs_data.json", "r") as f:
            gigs_data = json.load(f)
    except FileNotFoundError:
        gigs_data = []
        print("⚠️ gigs_data.json not found, using empty list")
    
    # Create documents for workers
    worker_documents = []
    for worker in workers_data:
        # Create rich text representation for better semantic search
        text = f"""
        Name: {worker['name']}
        Title: {worker['title']}
        Skills: {', '.join(worker['skills'])}
        Experience: {worker['experience']}
        Location: {worker['location']}
        Rate: {worker['hourly_rate']}
        Availability: {worker['availability']}
        Bio: {worker['bio']}
        """
        doc = Document(
            text=text,
            metadata=worker
        )
        worker_documents.append(doc)
    
    # Create documents for gigs
    gig_documents = []
    for gig in gigs_data:
        text = f"""
        Title: {gig['title']}
        Company: {gig['company']}
        Required Skills: {', '.join(gig['required_skills'])}
        Experience Level: {gig['experience_level']}
        Location: {gig['location']}
        Budget: {gig['budget']}
        Duration: {gig['duration']}
        Description: {gig['description']}
        """
        doc = Document(
            text=text,
            metadata=gig
        )
        gig_documents.append(doc)
    
    # Create vector store and index for workers
    workers_vector_store = ChromaVectorStore(chroma_collection=workers_collection)
    workers_index = VectorStoreIndex.from_documents(
        worker_documents,
        vector_store=workers_vector_store
    )
    
    # Create vector store and index for gigs
    gigs_vector_store = ChromaVectorStore(chroma_collection=gigs_collection)
    gigs_index = VectorStoreIndex.from_documents(
        gig_documents,
        vector_store=gigs_vector_store
    )
    
    print(f"✅ Indexed {len(worker_documents)} workers and {len(gig_documents)} gigs")
    
    return workers_index, gigs_index, workers_data, gigs_data

# Load and index data at startup
print("🔄 Loading and indexing data...")
workers_index, gigs_index, workers_db, gigs_db = load_and_index_data()
print("✅ Data loaded and indexed!")

# ============== MCP SERVER IMPLEMENTATION ==============

mcp_server = Server("gig-market-mcp-rag")

@mcp_server.list_tools()
async def list_tools() -> List[Tool]:
    """List all available MCP tools with RAG capabilities"""
    return [
        Tool(
            name="create_worker_profile",
            description="Transform user's unstructured text into a professional, structured gig worker profile using AI",
            inputSchema={
                "type": "object",
                "properties": {
                    "raw_text": {
                        "type": "string",
                        "description": "User's description of their skills, experience, and preferences"
                    }
                },
                "required": ["raw_text"]
            }
        ),
        Tool(
            name="create_gig_post",
            description="Transform user's unstructured text into a clear, structured gig job post using AI",
            inputSchema={
                "type": "object",
                "properties": {
                    "raw_text": {
                        "type": "string",
                        "description": "User's description of the job requirements and project details"
                    }
                },
                "required": ["raw_text"]
            }
        ),
        Tool(
            name="find_matching_gigs_rag",
            description="Find the best matching gig posts using SEMANTIC SEARCH with vector embeddings and RAG. Returns top matches based on skills, experience, and location similarity.",
            inputSchema={
                "type": "object",
                "properties": {
                    "worker_profile": {
                        "type": "object",
                        "description": "The structured worker profile to match"
                    },
                    "top_n": {
                        "type": "integer",
                        "description": "Number of top matches to return",
                        "default": 5
                    }
                },
                "required": ["worker_profile"]
            }
        ),
        Tool(
            name="find_matching_workers_rag",
            description="Find the best matching workers using SEMANTIC SEARCH with vector embeddings and RAG. Returns top matches based on required skills, experience, and location similarity.",
            inputSchema={
                "type": "object",
                "properties": {
                    "gig_post": {
                        "type": "object",
                        "description": "The structured gig post to match"
                    },
                    "top_n": {
                        "type": "integer",
                        "description": "Number of top matches to return",
                        "default": 5
                    }
                },
                "required": ["gig_post"]
            }
        )
    ]

@mcp_server.call_tool()
async def call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
    """Handle MCP tool calls with RAG-enhanced matching"""
    
    if name == "create_worker_profile":
        raw_text = arguments["raw_text"]
        
        message = client.messages.create(
            model="claude-sonnet-4-20250514",
            max_tokens=1500,
            messages=[{
                "role": "user",
                "content": f"""You are a professional career consultant. Transform this person's description into an attractive gig worker profile.

USER INPUT:
{raw_text}

Create a professional profile with these fields. Return ONLY valid JSON (no markdown, no explanation):

{{
  "name": "full name",
  "title": "professional title/role",
  "skills": ["skill1", "skill2", "skill3", ...],
  "experience": "X years",
  "location": "city, country",
  "hourly_rate": "€X/hour or price range",
  "availability": "full-time/part-time/freelance/weekends/flexible",
  "bio": "compelling 1-2 sentence professional summary"
}}

Make it professional and appealing. If information is missing, infer reasonable values."""
            }]
        )
        
        response_text = message.content[0].text.strip()
        if response_text.startswith("```"):
            response_text = response_text.split("```")[1]
            if response_text.startswith("json"):
                response_text = response_text[4:]
            response_text = response_text.strip()
        
        profile_data = json.loads(response_text)
        return [TextContent(type="text", text=json.dumps(profile_data))]
    
    elif name == "create_gig_post":
        raw_text = arguments["raw_text"]
        
        message = client.messages.create(
            model="claude-sonnet-4-20250514",
            max_tokens=1500,
            messages=[{
                "role": "user",
                "content": f"""You are a hiring manager. Transform this job description into a clear gig post.

USER INPUT:
{raw_text}

Create a professional gig post with these fields. Return ONLY valid JSON (no markdown, no explanation):

{{
  "title": "clear job title",
  "company": "company name or 'Private Client'",
  "required_skills": ["skill1", "skill2", "skill3", ...],
  "experience_level": "Junior/Mid-level/Senior (X years) or X+ years",
  "location": "location or Remote",
  "budget": "€X-Y or budget range",
  "duration": "time period",
  "description": "clear 1-2 sentence project description"
}}

Make it clear and professional. If information is missing, insert Unknown."""
            }]
        )
        
        response_text = message.content[0].text.strip()
        if response_text.startswith("```"):
            response_text = response_text.split("```")[1]
            if response_text.startswith("json"):
                response_text = response_text[4:]
            response_text = response_text.strip()
        
        gig_data = json.loads(response_text)
        return [TextContent(type="text", text=json.dumps(gig_data))]
    
    elif name == "find_matching_gigs_rag":
        worker_profile = arguments["worker_profile"]
        top_n = arguments.get("top_n", 5)
        
        # Create semantic search query from worker profile
        query = f"""
        Looking for gig opportunities for:
        Skills: {', '.join(worker_profile.get('skills', []))}
        Experience: {worker_profile.get('experience', '')}
        Location: {worker_profile.get('location', '')}
        Availability: {worker_profile.get('availability', '')}
        """
        
        # Perform semantic search using LlamaIndex
        query_engine = gigs_index.as_query_engine(similarity_top_k=top_n)
        response = query_engine.query(query)
        
        # Extract matches from response
        matches = []
        for node in response.source_nodes:
            gig = node.metadata
            score = int(node.score * 100)  # Convert to 0-100 scale
            
            # Calculate skill overlap
            worker_skills = set(s.lower() for s in worker_profile.get('skills', []))
            gig_skills = set(s.lower() for s in gig.get('required_skills', []))
            matched_skills = list(worker_skills.intersection(gig_skills))
            
            matches.append({
                "gig": gig,
                "score": score,
                "matched_skills": matched_skills,
                "semantic_similarity": node.score
            })
        
        return [TextContent(type="text", text=json.dumps(matches))]
    
    elif name == "find_matching_workers_rag":
        gig_post = arguments["gig_post"]
        top_n = arguments.get("top_n", 5)
        
        # Create semantic search query from gig post
        query = f"""
        Looking for workers for this gig:
        Required Skills: {', '.join(gig_post.get('required_skills', []))}
        Experience Level: {gig_post.get('experience_level', '')}
        Location: {gig_post.get('location', '')}
        Project: {gig_post.get('description', '')}
        """
        
        # Perform semantic search using LlamaIndex
        query_engine = workers_index.as_query_engine(similarity_top_k=top_n)
        response = query_engine.query(query)
        
        # Extract matches from response
        matches = []
        for node in response.source_nodes:
            worker = node.metadata
            score = int(node.score * 100)  # Convert to 0-100 scale
            
            # Calculate skill overlap
            worker_skills = set(s.lower() for s in worker.get('skills', []))
            gig_skills = set(s.lower() for s in gig_post.get('required_skills', []))
            matched_skills = list(gig_skills.intersection(worker_skills))
            
            matches.append({
                "worker": worker,
                "score": score,
                "matched_skills": matched_skills,
                "semantic_similarity": node.score
            })
        
        return [TextContent(type="text", text=json.dumps(matches))]
    
    return [TextContent(type="text", text=json.dumps({"error": "Tool not found"}))]

# ============== AGENTIC WORKFLOW ==============

def format_tools_for_claude(tools: List[Tool]) -> List[Dict]:
    """Convert MCP tools to Anthropic API format"""
    return [
        {
            "name": tool.name,
            "description": tool.description,
            "input_schema": tool.inputSchema
        }
        for tool in tools
    ]

async def worker_agent_workflow(user_description: str) -> tuple[str, str]:
    """Agent workflow: Create worker profile → Find matching gigs with RAG"""
    
    tools_list = await list_tools()
    tools_for_api = format_tools_for_claude(tools_list)
    
    conversation_history = [{
        "role": "user",
        "content": f"""I need help with my gig worker profile and finding opportunities.

Here's my background:
{user_description}

Please:
1. Create a professional profile for me
2. Find the top 5 matching gig opportunities using semantic search
3. Explain why each match is good, highlighting semantic similarity and matched skills

Use the available tools to help me."""
    }]
    
    system_prompt = """You are a career advisor with access to a RAG system. 
The find_matching_gigs_rag tool uses VECTOR EMBEDDINGS and SEMANTIC SEARCH to find the best matches.
Explain that matches are found using advanced AI semantic matching, not just keyword matching.
Be enthusiastic about the semantic similarity scores!"""
    
    profile_created = None
    
    for _ in range(5):
        response = client.messages.create(
            model="claude-sonnet-4-20250514",
            max_tokens=4000,
            system=system_prompt,
            tools=tools_for_api,
            messages=conversation_history
        )
        
        if response.stop_reason == "end_turn":
            final_text = ""
            for content in response.content:
                if content.type == "text":
                    final_text += content.text
            return profile_created or "Profile created", final_text
        
        elif response.stop_reason == "tool_use":
            tool_results = []
            
            for content in response.content:
                if content.type == "tool_use":
                    result = await call_tool(content.name, content.input)
                    result_text = result[0].text
                    
                    if content.name == "create_worker_profile":
                        profile_created = result_text
                    
                    tool_results.append({
                        "type": "tool_result",
                        "tool_use_id": content.id,
                        "content": result_text
                    })
            
            conversation_history.append({"role": "assistant", "content": response.content})
            conversation_history.append({"role": "user", "content": tool_results})
    
    return profile_created or "{}", "Agent completed"

async def employer_agent_workflow(job_description: str) -> tuple[str, str]:
    """Agent workflow: Create gig post → Find matching workers with RAG"""
    
    tools_list = await list_tools()
    tools_for_api = format_tools_for_claude(tools_list)
    
    conversation_history = [{
        "role": "user",
        "content": f"""I need to create a gig post and find qualified workers.

Here's what I'm looking for:
{job_description}

Please:
1. Create a clear gig post
2. Find the top 5 best matching workers using semantic search
3. Explain why each candidate is a good fit, highlighting semantic similarity

Use the available tools to help me."""
    }]
    
    system_prompt = """You are a hiring consultant with access to a RAG system. 
The find_matching_workers_rag tool uses VECTOR EMBEDDINGS and SEMANTIC SEARCH to find the best matches.
Explain that matches are found using advanced AI semantic matching powered by HuggingFace embeddings.
Be enthusiastic about the semantic similarity scores!"""
    
    gig_created = None
    
    for _ in range(5):
        response = client.messages.create(
            model="claude-sonnet-4-20250514",
            max_tokens=4000,
            system=system_prompt,
            tools=tools_for_api,
            messages=conversation_history
        )
        
        if response.stop_reason == "end_turn":
            final_text = ""
            for content in response.content:
                if content.type == "text":
                    final_text += content.text
            return gig_created or "Gig post created", final_text
        
        elif response.stop_reason == "tool_use":
            tool_results = []
            
            for content in response.content:
                if content.type == "tool_use":
                    result = await call_tool(content.name, content.input)
                    result_text = result[0].text
                    
                    if content.name == "create_gig_post":
                        gig_created = result_text
                    
                    tool_results.append({
                        "type": "tool_result",
                        "tool_use_id": content.id,
                        "content": result_text
                    })
            
            conversation_history.append({"role": "assistant", "content": response.content})
            conversation_history.append({"role": "user", "content": tool_results})
    
    return gig_created or "{}", "Agent completed"

# ============== GRADIO UI ==============

def run_worker_flow(description: str) -> tuple[str, str]:
    """Worker flow with RAG"""
    try:
        profile_json, analysis = asyncio.run(worker_agent_workflow(description))
        
        profile = json.loads(profile_json)
        profile_display = f"""## ✅ Your Professional Profile

**{profile.get('name', 'N/A')}**  
*{profile.get('title', 'N/A')}*

📍 **Location:** {profile.get('location', 'N/A')}  
💼 **Experience:** {profile.get('experience', 'N/A')}  
💰 **Rate:** {profile.get('hourly_rate', 'N/A')}  
⏰ **Availability:** {profile.get('availability', 'N/A')}

**🎯 Skills:**  
{', '.join(profile.get('skills', []))}

**📝 Bio:**  
{profile.get('bio', 'N/A')}
"""
        
        return profile_display, analysis
    except Exception as e:
        return f"❌ Error: {str(e)}", ""

def run_employer_flow(description: str) -> tuple[str, str]:
    """Employer flow with RAG"""
    try:
        gig_json, analysis = asyncio.run(employer_agent_workflow(description))
        
        gig = json.loads(gig_json)
        gig_display = f"""## ✅ Your Gig Post

**{gig.get('title', 'N/A')}**  
*{gig.get('company', 'N/A')}*

📍 **Location:** {gig.get('location', 'N/A')}  
👔 **Experience Level:** {gig.get('experience_level', 'N/A')}  
💰 **Budget:** {gig.get('budget', 'N/A')}  
⏱️ **Duration:** {gig.get('duration', 'N/A')}

**🎯 Required Skills:**  
{', '.join(gig.get('required_skills', []))}

**📝 Description:**  
{gig.get('description', 'N/A')}
"""
        
        return gig_display, analysis
    except Exception as e:
        return f"❌ Error: {str(e)}", ""

# ============== GRADIO INTERFACE ==============

with gr.Blocks(title="🤖 Jobly - Transforming Gig Market with AI") as app:
    
    # BANNER 
    gr.HTML("""
    <div style="text-align: center; margin-bottom: 20px;">
        <img src="https://huggingface.co/spaces/MCP-1st-Birthday/Jobly/resolve/main/banner_jobly.png" 
             style="width: 100%; max-width: 1200px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);" 
             alt="GigMatch AI Banner"/>
    </div>
    """)
    
    with gr.Tabs():
        
        # BOARD 1: WORKER SEEKING GIGS
        with gr.Tab("👤 Find Gigs for Me", elem_id="worker-board"):
            gr.Markdown("""
            ## 🎯 I'm a Gig Worker looking for opportunities
            
            Tell me about yourself, and our **AI + RAG system** will:
            1. ✨ Create your professional profile
            2. 🔍 Search through **50 gig posts** 
            3. 💡 Find the top 5 matches - **AI-powered feature**
            
            **Example:** "I'm Eddy Stone, an experienced handyman with 10 years doing plumbing, 
            electrical work, and carpentry. Based in Rome, available weekdays and weekends, 
            charge around €25/hour"
            """)
            
            with gr.Row():
                with gr.Column(scale=2):
                    worker_input = gr.Textbox(
                        label="📝 Tell me about yourself",
                        placeholder="Tell me your full name, describe your skills, experience, location, rate, and what you're looking for...",
                        lines=6
                    )
                    worker_btn = gr.Button("🚀 Create profile & find your dream gig", variant="primary", size="lg")
            
            with gr.Row():
                with gr.Column():
                    worker_profile_output = gr.Markdown(label="Your Profile")
                with gr.Column():
                    worker_matches_output = gr.Markdown(label="🔍 Semantic Search Results")
            
            worker_btn.click(
                fn=run_worker_flow,
                inputs=worker_input,
                outputs=[worker_profile_output, worker_matches_output]
            )
        
        # BOARD 2: EMPLOYER SEEKING WORKERS
        with gr.Tab("💼 Find Workers for My Gig", elem_id="employer-board"):
            gr.Markdown("""
            ## 🎯 I'm looking for help with a task
            
            Describe your needs, and our **AI Agent** will:
            1. ✨ Create a clear gig post
            2. 🔍 Search through **50 worker profiles** 
            3. 💡 Find the top 5 matches - **AI-powered feature**
      
            
            **Example:** "I need someone to move my apartment furniture and boxes 
            to a new place about 10km away. It's a 2-bedroom apartment. Need someone 
            with a van and experience with heavy lifting. Budget around €300, can do it 
            this weekend in Barcelona"
            """)
            
            with gr.Column(scale=2):
                    employer_input = gr.Textbox(
                        label="📝 Describe your needs",
                        placeholder="What skills do you need? Job details? Budget? Timeline?",
                        lines=6
                    )
                    employer_btn = gr.Button("🚀 Create Post & Find Workers", variant="primary", size="lg")
            
            with gr.Row():
                with gr.Column():
                    employer_post_output = gr.Markdown(label="Your Gig Post")
                with gr.Column():
                    employer_matches_output = gr.Markdown(label="🔍 Semantic Search Results")
            
            employer_btn.click(
                fn=run_employer_flow,
                inputs=employer_input,
                outputs=[employer_post_output, employer_matches_output]
            )
    
    gr.Markdown(f"""
    ---
    
    ### 🧠 Some amazing nerd facts
    
    **🦙 LlamaIndex RAG Pipeline: to keep it short**
    ```
    Your Query → Vector Embedding → Semantic Search → Top K Results → AI Analysis
    ```
    
    **🔧 MCP Tools:**
    1. `create_worker_profile` - AI profile generation
    2. `create_gig_post` - AI post generation
    3. `find_matching_gigs_rag` - **Semantic search** with vector embeddings
    4. `find_matching_workers_rag` - **Semantic search** with vector embeddings
    
    **📊 Database Stats:**
    - **Workers indexed:** {len(workers_db)}
    - **Gigs indexed:** {len(gigs_db)}
    - **Total potential matches:** {len(workers_db) * len(gigs_db)}
    - **Embedding model:** sentence-transformers/all-MiniLM-L6-v2 (HuggingFace 🤗)
    - **Vector DB:** ChromaDB
    
    **🎯 Matching Features:**
    - ✅ Semantic similarity (not just keyword matching!)
    - ✅ Vector embeddings for deep understanding
    - ✅ Skills matching
    - ✅ Location awareness
    - ✅ Experience level matching
    
    ### 🛠️ Tech Stack
    - **AI Agent:** Claude Sonnet 4 (Anthropic)
    - **RAG Framework:** LlamaIndex 🦙
    - **Embeddings:** HuggingFace sentence-transformers 🤗
    - **Vector Store:** ChromaDB
    - **Protocol:** Model Context Protocol (MCP)
    
    *Built for Hugging Face Winter Hackathon 2025 by Jobly Team (Valentina, Giacomo & Elisa <3) 🎉*
    """)

if __name__ == "__main__":
    app.launch(share=True)