File size: 8,082 Bytes
7eb32cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import json
from pathlib import Path
from typing import List, Dict, Any, Optional
from datetime import datetime
import sqlite3


class MemoryStore:
    """Persistent memory store for agent context and user preferences"""
    
    def __init__(self, db_path: str = "data/memory.db"):
        """Initialize memory store with SQLite"""
        Path(db_path).parent.mkdir(parents=True, exist_ok=True)
        self.db_path = db_path
        self._init_db()
        
    def _init_db(self):
        """Initialize database schema"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Create memories table
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS memories (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                content TEXT NOT NULL,
                memory_type TEXT,
                metadata TEXT,
                created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                importance INTEGER DEFAULT 5
            )
        ''')
        
        # Create user preferences table
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS preferences (
                key TEXT PRIMARY KEY,
                value TEXT NOT NULL,
                updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        ''')
        
        # Create context table for short-term memory
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS context (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                session_id TEXT,
                content TEXT NOT NULL,
                created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        ''')
        
        conn.commit()
        conn.close()
    
    def add_memory(
        self,
        content: str,
        memory_type: str = 'general',
        metadata: Dict[str, Any] = None,
        importance: int = 5
    ) -> int:
        """
        Add a memory to long-term storage
        
        Args:
            content: Memory content
            memory_type: Type of memory (general, task, preference, etc.)
            metadata: Additional metadata
            importance: Importance score (1-10)
            
        Returns:
            Memory ID
        """
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        metadata_json = json.dumps(metadata) if metadata else '{}'
        
        cursor.execute('''
            INSERT INTO memories (content, memory_type, metadata, importance)
            VALUES (?, ?, ?, ?)
        ''', (content, memory_type, metadata_json, importance))
        
        memory_id = cursor.lastrowid
        conn.commit()
        conn.close()
        
        return memory_id
    
    def get_memories(
        self,
        memory_type: Optional[str] = None,
        limit: int = 10,
        min_importance: int = 0
    ) -> List[Dict[str, Any]]:
        """
        Retrieve memories
        
        Args:
            memory_type: Filter by memory type
            limit: Maximum number of memories to return
            min_importance: Minimum importance score
            
        Returns:
            List of memories
        """
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        query = '''
            SELECT id, content, memory_type, metadata, created_at, importance
            FROM memories
            WHERE importance >= ?
        '''
        params = [min_importance]
        
        if memory_type:
            query += ' AND memory_type = ?'
            params.append(memory_type)
        
        query += ' ORDER BY importance DESC, created_at DESC LIMIT ?'
        params.append(limit)
        
        cursor.execute(query, params)
        rows = cursor.fetchall()
        conn.close()
        
        memories = []
        for row in rows:
            memories.append({
                'id': row[0],
                'content': row[1],
                'memory_type': row[2],
                'metadata': json.loads(row[3]),
                'created_at': row[4],
                'importance': row[5]
            })
        
        return memories
    
    def get_relevant_memories(self, query: str, k: int = 5) -> str:
        """
        Get memories relevant to a query
        
        Args:
            query: Search query
            k: Number of memories to return
            
        Returns:
            Formatted string of relevant memories
        """
        # Simple keyword-based search (can be enhanced with embeddings)
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Search for memories containing query keywords
        keywords = query.lower().split()
        
        memories = []
        for keyword in keywords[:3]:  # Limit to 3 keywords
            cursor.execute('''
                SELECT content, memory_type, importance
                FROM memories
                WHERE LOWER(content) LIKE ?
                ORDER BY importance DESC
                LIMIT ?
            ''', (f'%{keyword}%', k))
            
            memories.extend(cursor.fetchall())
        
        conn.close()
        
        if not memories:
            return "No relevant memories found."
        
        # Format memories
        unique_memories = list({m[0]: m for m in memories}.values())[:k]
        formatted = []
        for content, mem_type, importance in unique_memories:
            formatted.append(f"[{mem_type}] {content}")
        
        return "\n".join(formatted)
    
    def set_preference(self, key: str, value: Any):
        """Set a user preference"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        value_json = json.dumps(value)
        
        cursor.execute('''
            INSERT OR REPLACE INTO preferences (key, value, updated_at)
            VALUES (?, ?, CURRENT_TIMESTAMP)
        ''', (key, value_json))
        
        conn.commit()
        conn.close()
    
    def get_preference(self, key: str, default: Any = None) -> Any:
        """Get a user preference"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('SELECT value FROM preferences WHERE key = ?', (key,))
        row = cursor.fetchone()
        conn.close()
        
        if row:
            return json.loads(row[0])
        return default
    
    def get_all_preferences(self) -> Dict[str, Any]:
        """Get all user preferences"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('SELECT key, value FROM preferences')
        rows = cursor.fetchall()
        conn.close()
        
        return {key: json.loads(value) for key, value in rows}
    
    def add_context(self, session_id: str, content: str):
        """Add to short-term context"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''
            INSERT INTO context (session_id, content)
            VALUES (?, ?)
        ''', (session_id, content))
        
        conn.commit()
        conn.close()
    
    def get_context(self, session_id: str, limit: int = 10) -> List[str]:
        """Get recent context for a session"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''
            SELECT content FROM context
            WHERE session_id = ?
            ORDER BY created_at DESC
            LIMIT ?
        ''', (session_id, limit))
        
        rows = cursor.fetchall()
        conn.close()
        
        return [row[0] for row in reversed(rows)]
    
    def clear_old_context(self, days: int = 7):
        """Clear context older than specified days"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''
            DELETE FROM context
            WHERE created_at < datetime('now', ? || ' days')
        ''', (f'-{days}',))
        
        conn.commit()
        conn.close()