Spaces:
Running
Running
File size: 13,625 Bytes
52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df c4e553b 52e61df 1845bc1 52e61df c4e553b 52e61df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
"""
LifeAdmin Coach UI - AI Chatbot Assistant with Tool Access
Provides conversational interface with RAG context, memory, and tool calling
"""
import gradio as gr
import asyncio
from datetime import datetime
import json
import os
def create_lifeadmin_coach_ui(agent):
"""Create LifeAdmin Coach chatbot interface with tool access"""
async def chat_with_coach(message, history):
"""Process chat message with RAG, memory, and tool execution"""
if not message or not message.strip():
return history, ""
try:
# Get relevant context from RAG
rag_context = ""
uploaded_files = []
try:
rag_results = await agent.rag_engine.search(message, k=3)
if rag_results:
rag_context = "\n".join([
f"- {doc.get('metadata', {}).get('filename', 'Unknown')}: {doc.get('text', '')[:200]}..."
for doc in rag_results
])
# Get list of uploaded files
for doc in rag_results:
filename = doc.get('metadata', {}).get('filename')
if filename and filename not in uploaded_files:
uploaded_files.append(filename)
except Exception:
pass
# Check for files in upload directory
upload_dir = "data/uploads"
if os.path.exists(upload_dir):
try:
files_in_dir = [f for f in os.listdir(upload_dir) if os.path.isfile(os.path.join(upload_dir, f))]
for f in files_in_dir:
if f not in uploaded_files:
uploaded_files.append(f)
except Exception:
pass
# Check for calendar events
calendar_files = []
output_dir = "data/outputs"
if os.path.exists(output_dir):
try:
calendar_files = [f for f in os.listdir(output_dir) if f.endswith('.ics')]
except Exception:
pass
# Check for drafted emails
email_files = []
if os.path.exists(output_dir):
try:
email_files = [f for f in os.listdir(output_dir) if 'email' in f.lower() and (f.endswith('.txt') or f.endswith('.html'))]
except Exception:
pass
# Get relevant memories
memory_context = ""
try:
memory_context = agent.memory.get_relevant_memories(message, k=3)
except Exception:
pass
# Detect if user is asking about specific tools/actions
message_lower = message.lower()
needs_tool = False
tool_action = None
# Detect tool requests
if any(word in message_lower for word in ['summarize', 'summary', 'key points', 'main points']):
if uploaded_files:
needs_tool = True
tool_action = "summarize"
elif any(word in message_lower for word in ['extract text', 'read', 'show content']):
if uploaded_files:
needs_tool = True
tool_action = "extract"
elif any(word in message_lower for word in ['draft email', 'write email', 'compose email']):
needs_tool = True
tool_action = "draft_email"
elif any(word in message_lower for word in ['calendar', 'events', 'schedule', 'meeting']):
needs_tool = True
tool_action = "calendar"
elif any(word in message_lower for word in ['uploaded', 'files', 'documents']):
tool_action = "list_files"
# Build enhanced prompt
system_context = f"""You are LifeAdmin Coach, a helpful AI assistant that helps users manage their life admin tasks.
You have access to:
- User's uploaded documents: {len(uploaded_files)} files
- Calendar events: {len(calendar_files)} events
- Drafted emails: {len(email_files)} drafts
- Past conversation history (via memory)
- Various automation tools
Your role:
- Answer questions about uploaded documents
- Provide information about calendar events and emails
- Provide advice on life admin tasks
- Help organize and plan tasks
- Be friendly, concise, and actionable
"""
if uploaded_files:
system_context += f"\nπ **Uploaded Files:**\n" + "\n".join([f" β’ {f}" for f in uploaded_files[:10]]) + "\n"
if rag_context:
system_context += f"\nπ **Document Content:**\n{rag_context}\n"
if calendar_files:
system_context += f"\nπ
**Calendar Events:**\n" + "\n".join([f" β’ {f}" for f in calendar_files[:5]]) + "\n"
if email_files:
system_context += f"\nβοΈ **Drafted Emails:**\n" + "\n".join([f" β’ {f}" for f in email_files[:5]]) + "\n"
if memory_context:
system_context += f"\nπ **Past Context:**\n{memory_context}\n"
# Execute tools if needed
tool_result = ""
if needs_tool and tool_action:
if tool_action == "summarize" and uploaded_files:
# Use the first PDF file
pdf_file = next((f for f in uploaded_files if f.lower().endswith('.pdf')), uploaded_files[0])
try:
from tools import summarize_pdf
result = await summarize_pdf(f"data/uploads/{pdf_file}", max_length=300)
if isinstance(result, dict) and 'summary' in result:
tool_result = f"\n**Summary of {pdf_file}:**\n{result['summary']}\n"
except Exception as e:
tool_result = f"\nCouldn't summarize: {str(e)}\n"
elif tool_action == "extract" and uploaded_files:
# Extract text from first file
file = uploaded_files[0]
try:
if file.lower().endswith('.pdf'):
from utils.pdf_utils import extract_text_from_pdf
text = extract_text_from_pdf(f"data/uploads/{file}")
tool_result = f"\n**Text from {file}:**\n{text[:500]}...\n"
elif file.lower().endswith(('.png', '.jpg', '.jpeg')):
from tools import extract_text_ocr
result = await extract_text_ocr(f"data/uploads/{file}", 'en')
tool_result = f"\n**Text from {file}:**\n{result.get('text', '')[:500]}...\n"
except Exception as e:
tool_result = f"\nCouldn't extract text: {str(e)}\n"
elif tool_action == "calendar":
if calendar_files:
tool_result = f"\n**Calendar Events:**\n" + "\n".join([f" β’ {f}" for f in calendar_files]) + "\n"
else:
tool_result = "\nNo calendar events created yet. You can create events in the Manual Dashboard.\n"
# Build full prompt
full_prompt = f"""{system_context}
{tool_result}
**User Question:** {message}
Provide a helpful, concise response. Reference the documents and information available above.
"""
# Get LLM response
from utils.llm_utils import get_llm_response
response = await get_llm_response(full_prompt, temperature=0.7, max_tokens=1000)
# Save to memory
try:
agent.memory.add_memory(
content=f"User: {message}\nCoach: {response}",
memory_type='conversation',
metadata={'timestamp': datetime.now().isoformat()},
importance=5
)
except Exception:
pass
# Update history
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, ""
except Exception as e:
import traceback
error_msg = f"β οΈ Error: {str(e)}\n\n{traceback.format_exc()}"
print(error_msg)
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": f"β οΈ Sorry, I encountered an error: {str(e)}"})
return history, ""
async def quick_action(action_type, history):
"""Handle quick action buttons"""
actions = {
"summarize_docs": "Can you summarize all the documents I've uploaded?",
"list_tasks": "What tasks or action items can you find in my documents?",
"deadlines": "Are there any deadlines or important dates I should know about?",
"help": "What can you help me with?"
}
message = actions.get(action_type, "")
if message:
return await chat_with_coach(message, history)
return history, ""
def clear_chat():
"""Clear chat history"""
return [], ""
# Build UI
with gr.Column():
gr.Markdown("""
## π€ LifeAdmin Coach
Your AI assistant for managing life admin tasks. Ask questions about your documents,
get advice on tasks, or chat about anything related to organizing your life!
**I can help you with:**
- Answering questions about uploaded documents (from Manual Dashboard)
- Summarizing PDFs and extracting key information
- Finding deadlines and important dates
- Checking your calendar events and drafted emails
- Organizing tasks and creating plans
- General life admin advice
**π‘ Tip:** Upload files in the Manual Dashboard first, then ask me questions here!
""")
# Chat interface
chatbot = gr.Chatbot(
label="π¬ Chat with LifeAdmin Coach",
height=500
)
# Input area
with gr.Row():
msg_input = gr.Textbox(
label="",
placeholder="Ask me anything about your documents or life admin tasks...",
scale=4,
lines=2
)
send_btn = gr.Button("Send", variant="primary", scale=1)
# Quick action buttons
with gr.Row():
gr.Markdown("**Quick Actions:**")
with gr.Row():
summarize_btn = gr.Button("π Summarize Docs", size="sm")
tasks_btn = gr.Button("β
List Tasks", size="sm")
deadlines_btn = gr.Button("π
Find Deadlines", size="sm")
help_btn = gr.Button("β Help", size="sm")
clear_btn = gr.Button("ποΈ Clear Chat", size="sm", variant="stop")
# Examples
with gr.Accordion("π‘ Example Questions", open=False):
gr.Examples(
examples=[
"What documents have I uploaded?",
"Summarize my PDF document",
"What calendar events do I have?",
"Have I drafted any emails?",
"Extract text from my uploaded image",
"What are the key points from my documents?",
"Find all phone numbers and emails in my documents",
"When is my next deadline?",
],
inputs=msg_input
)
# Event handlers
def chat_wrapper(message, history):
"""Sync wrapper for async chat function"""
return asyncio.run(chat_with_coach(message, history))
def quick_action_wrapper(action_type, history):
"""Sync wrapper for quick actions"""
return asyncio.run(quick_action(action_type, history))
# Connect events
msg_input.submit(
fn=chat_wrapper,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
)
send_btn.click(
fn=chat_wrapper,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
)
summarize_btn.click(
fn=lambda h: quick_action_wrapper("summarize_docs", h),
inputs=[chatbot],
outputs=[chatbot, msg_input]
)
tasks_btn.click(
fn=lambda h: quick_action_wrapper("list_tasks", h),
inputs=[chatbot],
outputs=[chatbot, msg_input]
)
deadlines_btn.click(
fn=lambda h: quick_action_wrapper("deadlines", h),
inputs=[chatbot],
outputs=[chatbot, msg_input]
)
help_btn.click(
fn=lambda h: quick_action_wrapper("help", h),
inputs=[chatbot],
outputs=[chatbot, msg_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot, msg_input]
)
return gr.Column() |