Spaces:
Running
Running
File size: 11,377 Bytes
02476c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
"""
Voice Agent UI - Autonomous voice-controlled agent
"""
import gradio as gr
import asyncio
from pathlib import Path
from utils.audio_utils import speech_to_text, text_to_speech
import time
def create_voice_agent_ui(agent):
"""Create voice agent interface"""
with gr.Row():
# Left column - Voice control
with gr.Column(scale=1):
gr.Markdown("""
### π€ Voice Control
Click the microphone button and speak your command.
The agent will autonomously execute your request.
""")
# Audio input
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="Speak Your Command"
)
# Manual text input as fallback
text_input = gr.Textbox(
label="Or Type Your Command",
placeholder="Example: Extract deadlines from my PDFs and create calendar events",
lines=3
)
# Execute button
execute_btn = gr.Button(
"π Execute Command",
variant="primary",
size="lg"
)
# Status indicator
status_box = gr.Textbox(
label="Status",
value="Ready",
interactive=False
)
gr.Markdown("---")
# Upload files for agent to process
voice_file_upload = gr.File(
label="Upload Files for Agent",
file_count="multiple",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".docx", ".txt", ".csv"]
)
uploaded_files_list = gr.Textbox(
label="Available Files",
placeholder="No files uploaded",
interactive=False,
lines=4
)
# Right column - Agent execution trace
with gr.Column(scale=2):
gr.Markdown("### π€ Agent Thoughts & Execution")
# Chat-like interface for agent thoughts
thought_trace = gr.Chatbot(
label="Agent Reasoning",
height=400,
type="messages"
)
# Final response
final_response = gr.Textbox(
label="Final Response",
lines=6,
placeholder="Agent's final answer will appear here..."
)
# Audio output
audio_output = gr.Audio(
label="Voice Response",
type="filepath",
autoplay=True
)
# Download outputs
with gr.Accordion("π₯ Generated Files", open=False):
outputs_files = gr.File(
label="Download Generated Files",
file_count="multiple"
)
# State variables
uploaded_files_state = gr.State([])
# Example commands
with gr.Row():
gr.Markdown("""
### π‘ Example Commands
Try these voice commands:
- "Extract all deadlines from my PDFs and add them to my calendar"
- "Summarize this document and send me a professional email summary"
- "Organize my uploaded files by type"
- "Find all documents mentioning invoices and extract amounts"
- "Create a calendar event for tomorrow at 2 PM titled Team Meeting"
- "Draft a friendly email to John about the project update"
""")
# Event handlers
async def handle_voice_file_upload(files):
"""Handle file uploads for voice agent"""
if not files:
return "No files uploaded", []
file_list = []
file_info_text = []
for file in files:
from utils.file_utils import copy_file, get_file_info
dest_path = f"data/uploads/{Path(file.name).name}"
copy_file(file.name, dest_path)
info = get_file_info(dest_path)
file_list.append(dest_path)
file_info_text.append(f"β {info['name']} ({info['size_mb']} MB)")
# Add to RAG
await agent.process_files_to_rag([{'path': dest_path, 'name': info['name']}])
return "\n".join(file_info_text), file_list
async def process_audio_command(audio_file, text_command, files_list):
"""Process voice or text command"""
# Determine input
if audio_file and not text_command:
# Transcribe audio
yield [], "π€ Transcribing audio...", "", None, None
command_text = await speech_to_text(audio_file)
if not command_text:
yield [], "β Failed to transcribe audio", "", None, None
return
yield [], f"β Transcribed: {command_text}", "", None, None
await asyncio.sleep(0.5)
elif text_command:
command_text = text_command
else:
yield [], "β οΈ Please provide a voice or text command", "", None, None
return
# Update status
yield [], f"π€ Planning: {command_text}", "", None, None
# Execute with agent
thoughts_display = []
final_answer = ""
try:
# Stream agent execution
async for thought in agent.execute(command_text, files_list, stream_thoughts=True):
if thought:
# Format thought for display
thought_msg = format_thought_message(thought)
thoughts_display.append(thought_msg)
# Update UI
status = get_status_from_thought(thought)
yield thoughts_display, status, "", None, None
await asyncio.sleep(0.1) # Small delay for UI update
# Get final answer
final_answer, all_thoughts = await agent.execute(command_text, files_list, stream_thoughts=False)
# Generate voice response
yield thoughts_display, "π Generating voice response...", final_answer, None, None
if final_answer:
audio_path = await text_to_speech(final_answer)
# Collect generated files
output_files = collect_output_files()
yield thoughts_display, "β Complete!", final_answer, audio_path, output_files
else:
yield thoughts_display, "β Complete!", "Task executed successfully.", None, None
except Exception as e:
error_msg = f"β Error: {str(e)}"
yield thoughts_display, error_msg, error_msg, None, None
def format_thought_message(thought):
"""Format thought as chat message"""
thought_type = thought.type
content = thought.content
# Choose role and styling based on thought type
if thought_type == 'planning':
role = "assistant"
icon = "π§ "
metadata = {"title": "π§ Planning"}
elif thought_type == 'tool_call':
role = "assistant"
icon = "π§"
tool_name = thought.tool_name or "unknown"
metadata = {"title": f"π§ Using Tool: {tool_name}"}
elif thought_type == 'reflection':
role = "assistant"
icon = "π"
metadata = {"title": "π Reflecting"}
elif thought_type == 'answer':
role = "assistant"
icon = "β
"
metadata = {"title": "β
Final Answer"}
else:
role = "assistant"
icon = "βΉοΈ"
metadata = {"title": "βΉοΈ Info"}
return {
"role": role,
"content": f"{icon} {content}",
"metadata": metadata
}
def get_status_from_thought(thought):
"""Get status message from thought"""
if thought.type == 'planning':
return "π§ Planning execution..."
elif thought.type == 'tool_call':
return f"π§ Executing: {thought.tool_name or 'tool'}..."
elif thought.type == 'reflection':
return "π Analyzing results..."
elif thought.type == 'answer':
return "β
Complete!"
else:
return "π€ Processing..."
def collect_output_files():
"""Collect generated output files"""
output_dir = Path("data/outputs")
if not output_dir.exists():
return None
# Get recent files (last 5 minutes)
recent_files = []
cutoff_time = time.time() - 300
for file_path in output_dir.glob("*"):
if file_path.is_file() and file_path.stat().st_mtime > cutoff_time:
recent_files.append(str(file_path))
return recent_files if recent_files else None
# Wire up events
voice_file_upload.change(
fn=handle_voice_file_upload,
inputs=[voice_file_upload],
outputs=[uploaded_files_list, uploaded_files_state]
)
execute_btn.click(
fn=process_audio_command,
inputs=[audio_input, text_input, uploaded_files_state],
outputs=[thought_trace, status_box, final_response, audio_output, outputs_files]
)
# Quick action buttons
gr.Markdown("### β‘ Quick Actions")
with gr.Row():
quick_summarize = gr.Button("π Summarize All Documents", size="sm")
quick_calendar = gr.Button("π
Extract & Create Events", size="sm")
quick_organize = gr.Button("ποΈ Organize Files", size="sm")
quick_search = gr.Button("π Search Documents", size="sm")
async def quick_action(action_text, files_list):
"""Execute quick action"""
async for update in process_audio_command(None, action_text, files_list):
yield update
quick_summarize.click(
fn=lambda f: quick_action("Summarize all my uploaded documents", f),
inputs=[uploaded_files_state],
outputs=[thought_trace, status_box, final_response, audio_output, outputs_files]
)
quick_calendar.click(
fn=lambda f: quick_action("Extract all dates and deadlines from my documents and create calendar events", f),
inputs=[uploaded_files_state],
outputs=[thought_trace, status_box, final_response, audio_output, outputs_files]
)
quick_organize.click(
fn=lambda f: quick_action("Organize all my files by type", f),
inputs=[uploaded_files_state],
outputs=[thought_trace, status_box, final_response, audio_output, outputs_files]
)
quick_search.click(
fn=lambda f: quick_action("Search my documents for important information and summarize findings", f),
inputs=[uploaded_files_state],
outputs=[thought_trace, status_box, final_response, audio_output, outputs_files]
) |