Spaces:
Running
Running
Update agent/agent_core.py
Browse files- agent/agent_core.py +183 -224
agent/agent_core.py
CHANGED
|
@@ -16,6 +16,10 @@ from agent.memory import MemoryStore
|
|
| 16 |
from utils.llm_utils import get_llm_response
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
class TaskStatus(Enum):
|
| 20 |
PENDING = "pending"
|
| 21 |
IN_PROGRESS = "in_progress"
|
|
@@ -27,13 +31,13 @@ class TaskStatus(Enum):
|
|
| 27 |
class AgentThought:
|
| 28 |
"""Represents a thought/step in agent reasoning"""
|
| 29 |
step: int
|
| 30 |
-
type: str
|
| 31 |
content: str
|
| 32 |
tool_name: Optional[str] = None
|
| 33 |
tool_args: Optional[Dict] = None
|
| 34 |
tool_result: Optional[Any] = None
|
| 35 |
timestamp: float = None
|
| 36 |
-
|
| 37 |
def __post_init__(self):
|
| 38 |
if self.timestamp is None:
|
| 39 |
self.timestamp = time.time()
|
|
@@ -41,7 +45,7 @@ class AgentThought:
|
|
| 41 |
|
| 42 |
@dataclass
|
| 43 |
class AgentTask:
|
| 44 |
-
"""Represents
|
| 45 |
id: str
|
| 46 |
description: str
|
| 47 |
tool: str
|
|
@@ -51,328 +55,283 @@ class AgentTask:
|
|
| 51 |
error: Optional[str] = None
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
class LifeAdminAgent:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
def __init__(self):
|
| 58 |
self.mcp_client = MCPClient()
|
| 59 |
self.rag_engine = RAGEngine()
|
| 60 |
self.memory = MemoryStore()
|
| 61 |
self.thoughts: List[AgentThought] = []
|
| 62 |
self.current_context = {}
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def reset_context(self):
|
| 65 |
-
"""Reset agent context for new task"""
|
| 66 |
self.thoughts = []
|
| 67 |
self.current_context = {}
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
async def plan(self, user_request: str, available_files: List[str] = None) -> List[AgentTask]:
|
| 70 |
-
|
| 71 |
-
Create execution plan from user request
|
| 72 |
-
|
| 73 |
-
Args:
|
| 74 |
-
user_request: Natural language request from user
|
| 75 |
-
available_files: List of uploaded files
|
| 76 |
-
|
| 77 |
-
Returns:
|
| 78 |
-
List of tasks to execute
|
| 79 |
-
"""
|
| 80 |
self.thoughts.append(AgentThought(
|
| 81 |
step=len(self.thoughts) + 1,
|
| 82 |
-
type=
|
| 83 |
content=f"Analyzing request: {user_request}"
|
| 84 |
))
|
| 85 |
-
|
| 86 |
-
#
|
| 87 |
tools = await self.mcp_client.list_tools()
|
| 88 |
tool_descriptions = "\n".join([
|
| 89 |
-
f"- {tool['name']}: {tool.get('description', '')}"
|
| 90 |
-
for tool in tools
|
| 91 |
])
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
relevant_docs = []
|
| 95 |
-
if user_request:
|
| 96 |
relevant_docs = await self.rag_engine.search(user_request, k=3)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
memory_context = self.memory.get_relevant_memories(user_request)
|
| 102 |
-
|
| 103 |
-
# Create planning prompt
|
| 104 |
-
planning_prompt = f"""You are an autonomous life admin agent. Create a step-by-step execution plan.
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
AVAILABLE FILES:
|
|
|
|
| 109 |
|
| 110 |
AVAILABLE TOOLS:
|
| 111 |
{tool_descriptions}
|
| 112 |
|
| 113 |
-
|
| 114 |
-
{
|
| 115 |
|
| 116 |
MEMORY:
|
| 117 |
{memory_context}
|
| 118 |
|
| 119 |
-
|
| 120 |
-
- id: unique identifier
|
| 121 |
-
- description: what this task does
|
| 122 |
-
- tool: which tool to use
|
| 123 |
-
- args: arguments for the tool (as a dict)
|
| 124 |
-
|
| 125 |
-
Return ONLY valid JSON array of tasks, no other text.
|
| 126 |
-
|
| 127 |
-
Example format:
|
| 128 |
[
|
| 129 |
{{
|
| 130 |
-
"id": "
|
| 131 |
-
"description": "Extract text
|
| 132 |
"tool": "ocr_extract_text",
|
| 133 |
-
"args": {{"file_path": "
|
| 134 |
}}
|
| 135 |
]
|
| 136 |
"""
|
| 137 |
-
|
| 138 |
self.thoughts.append(AgentThought(
|
| 139 |
step=len(self.thoughts) + 1,
|
| 140 |
-
type=
|
| 141 |
-
content="
|
| 142 |
))
|
| 143 |
-
|
| 144 |
try:
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
if
|
| 150 |
-
|
| 151 |
-
elif
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
tasks = [
|
| 157 |
-
AgentTask(**
|
| 158 |
-
for task in
|
| 159 |
]
|
| 160 |
-
|
| 161 |
self.thoughts.append(AgentThought(
|
| 162 |
step=len(self.thoughts) + 1,
|
| 163 |
-
type=
|
| 164 |
-
content=f"
|
| 165 |
))
|
| 166 |
-
|
| 167 |
return tasks
|
| 168 |
-
|
| 169 |
except Exception as e:
|
| 170 |
self.thoughts.append(AgentThought(
|
| 171 |
step=len(self.thoughts) + 1,
|
| 172 |
-
type=
|
| 173 |
-
content=f"Planning failed: {
|
| 174 |
))
|
| 175 |
return []
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
async def execute_task(self, task: AgentTask) -> AgentTask:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
self.thoughts.append(AgentThought(
|
| 181 |
step=len(self.thoughts) + 1,
|
| 182 |
-
type=
|
| 183 |
-
content=f"Executing: {task.description}",
|
| 184 |
tool_name=task.tool,
|
| 185 |
tool_args=task.args
|
| 186 |
))
|
| 187 |
-
|
| 188 |
task.status = TaskStatus.IN_PROGRESS
|
| 189 |
-
|
| 190 |
try:
|
| 191 |
-
# Call MCP tool
|
| 192 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
| 193 |
-
|
| 194 |
-
task.result = result
|
| 195 |
task.status = TaskStatus.COMPLETED
|
| 196 |
-
|
|
|
|
| 197 |
self.thoughts.append(AgentThought(
|
| 198 |
step=len(self.thoughts) + 1,
|
| 199 |
-
type=
|
| 200 |
content=f"✓ Completed: {task.description}",
|
| 201 |
tool_name=task.tool,
|
| 202 |
tool_result=result
|
| 203 |
))
|
| 204 |
-
|
| 205 |
-
return task
|
| 206 |
-
|
| 207 |
except Exception as e:
|
| 208 |
-
task.error = str(e)
|
| 209 |
task.status = TaskStatus.FAILED
|
| 210 |
-
|
|
|
|
| 211 |
self.thoughts.append(AgentThought(
|
| 212 |
step=len(self.thoughts) + 1,
|
| 213 |
-
type=
|
| 214 |
-
content=f"✗ Failed: {task.description}
|
| 215 |
tool_name=task.tool
|
| 216 |
))
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
original_request: Original user request
|
| 227 |
-
|
| 228 |
-
Returns:
|
| 229 |
-
Final answer string
|
| 230 |
-
"""
|
| 231 |
self.thoughts.append(AgentThought(
|
| 232 |
step=len(self.thoughts) + 1,
|
| 233 |
-
type=
|
| 234 |
-
content="Analyzing results
|
| 235 |
))
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
else:
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
reflection_prompt = f"""You are an autonomous life admin agent. Review the execution results and create a helpful response.
|
| 246 |
|
| 247 |
-
|
|
|
|
| 248 |
|
| 249 |
-
|
| 250 |
-
{
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
2. What outputs were created (files, calendar events, etc.)
|
| 255 |
-
3. Any issues encountered
|
| 256 |
-
4. Next steps if applicable
|
| 257 |
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
"""
|
| 260 |
-
|
| 261 |
try:
|
| 262 |
-
|
| 263 |
-
|
| 264 |
self.thoughts.append(AgentThought(
|
| 265 |
step=len(self.thoughts) + 1,
|
| 266 |
-
type=
|
| 267 |
-
content=
|
| 268 |
))
|
| 269 |
-
|
| 270 |
-
#
|
| 271 |
self.memory.add_memory(
|
| 272 |
-
f"Request: {
|
| 273 |
-
metadata={
|
| 274 |
)
|
| 275 |
-
|
| 276 |
-
return
|
| 277 |
-
|
| 278 |
except Exception as e:
|
| 279 |
-
|
|
|
|
| 280 |
self.thoughts.append(AgentThought(
|
| 281 |
step=len(self.thoughts) + 1,
|
| 282 |
-
type=
|
| 283 |
-
content=
|
| 284 |
))
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
"""
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
Args:
|
| 292 |
-
user_request: User's natural language request
|
| 293 |
-
files: Uploaded files to process
|
| 294 |
-
stream_thoughts: Whether to yield thoughts as they happen
|
| 295 |
-
|
| 296 |
-
Yields:
|
| 297 |
-
Thoughts if stream_thoughts=True
|
| 298 |
-
|
| 299 |
-
Returns:
|
| 300 |
-
Final answer and complete thought trace
|
| 301 |
"""
|
|
|
|
| 302 |
self.reset_context()
|
| 303 |
-
|
| 304 |
-
#
|
| 305 |
-
|
| 306 |
-
yield self.thoughts[-1] if self.thoughts else None
|
| 307 |
-
|
| 308 |
-
tasks = await self.plan(user_request, files)
|
| 309 |
-
|
| 310 |
if stream_thoughts:
|
| 311 |
-
for
|
| 312 |
-
yield
|
| 313 |
-
|
| 314 |
if not tasks:
|
| 315 |
-
|
|
|
|
| 316 |
step=len(self.thoughts) + 1,
|
| 317 |
-
type=
|
| 318 |
-
content="Could not create
|
| 319 |
)
|
| 320 |
-
self.thoughts.append(
|
| 321 |
-
return error_thought.content, self.thoughts
|
| 322 |
-
|
| 323 |
-
# Phase 2: Execution
|
| 324 |
-
executed_tasks = []
|
| 325 |
-
for task in tasks:
|
| 326 |
-
executed_task = await self.execute_task(task)
|
| 327 |
-
executed_tasks.append(executed_task)
|
| 328 |
-
|
| 329 |
if stream_thoughts:
|
| 330 |
-
yield
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
if stream_thoughts:
|
| 336 |
-
yield self.thoughts[-1]
|
| 337 |
-
|
|
|
|
|
|
|
| 338 |
return final_answer, self.thoughts
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
def get_thought_trace(self) -> List[Dict]:
|
| 341 |
-
|
| 342 |
-
return [asdict(thought) for thought in self.thoughts]
|
| 343 |
-
|
| 344 |
-
async def process_files_to_rag(self, files: List[Dict[str, str]]):
|
| 345 |
-
"""Process uploaded files and add to RAG engine"""
|
| 346 |
-
for file_info in files:
|
| 347 |
-
try:
|
| 348 |
-
# Extract text based on file type
|
| 349 |
-
if file_info['path'].endswith('.pdf'):
|
| 350 |
-
from utils.pdf_utils import extract_text_from_pdf
|
| 351 |
-
text = extract_text_from_pdf(file_info['path'])
|
| 352 |
-
elif file_info['path'].endswith(('.png', '.jpg', '.jpeg')):
|
| 353 |
-
# Use OCR tool
|
| 354 |
-
result = await self.mcp_client.call_tool(
|
| 355 |
-
'ocr_extract_text',
|
| 356 |
-
{'file_path': file_info['path'], 'language': 'en'}
|
| 357 |
-
)
|
| 358 |
-
text = result.get('text', '')
|
| 359 |
-
else:
|
| 360 |
-
with open(file_info['path'], 'r', encoding='utf-8') as f:
|
| 361 |
-
text = f.read()
|
| 362 |
-
|
| 363 |
-
# Add to RAG
|
| 364 |
-
await self.rag_engine.add_document(
|
| 365 |
-
text=text,
|
| 366 |
-
metadata={'filename': file_info['name'], 'path': file_info['path']}
|
| 367 |
-
)
|
| 368 |
-
|
| 369 |
-
except Exception as e:
|
| 370 |
-
print(f"Error processing {file_info['name']}: {e}")
|
| 371 |
-
|
| 372 |
-
async def manual_tool_call(self, tool_name: str, args: Dict[str, Any]) -> Any:
|
| 373 |
-
"""Direct tool call for manual mode"""
|
| 374 |
-
try:
|
| 375 |
-
result = await self.mcp_client.call_tool(tool_name, args)
|
| 376 |
-
return {'success': True, 'result': result}
|
| 377 |
-
except Exception as e:
|
| 378 |
-
return {'success': False, 'error': str(e)}
|
|
|
|
| 16 |
from utils.llm_utils import get_llm_response
|
| 17 |
|
| 18 |
|
| 19 |
+
# -------------------------
|
| 20 |
+
# ENUMS & MODELS
|
| 21 |
+
# -------------------------
|
| 22 |
+
|
| 23 |
class TaskStatus(Enum):
|
| 24 |
PENDING = "pending"
|
| 25 |
IN_PROGRESS = "in_progress"
|
|
|
|
| 31 |
class AgentThought:
|
| 32 |
"""Represents a thought/step in agent reasoning"""
|
| 33 |
step: int
|
| 34 |
+
type: str # planning | tool_call | reflection | answer
|
| 35 |
content: str
|
| 36 |
tool_name: Optional[str] = None
|
| 37 |
tool_args: Optional[Dict] = None
|
| 38 |
tool_result: Optional[Any] = None
|
| 39 |
timestamp: float = None
|
| 40 |
+
|
| 41 |
def __post_init__(self):
|
| 42 |
if self.timestamp is None:
|
| 43 |
self.timestamp = time.time()
|
|
|
|
| 45 |
|
| 46 |
@dataclass
|
| 47 |
class AgentTask:
|
| 48 |
+
"""Represents an atomic MCP operation"""
|
| 49 |
id: str
|
| 50 |
description: str
|
| 51 |
tool: str
|
|
|
|
| 55 |
error: Optional[str] = None
|
| 56 |
|
| 57 |
|
| 58 |
+
# -------------------------
|
| 59 |
+
# MAIN AGENT CLASS
|
| 60 |
+
# -------------------------
|
| 61 |
+
|
| 62 |
class LifeAdminAgent:
|
| 63 |
+
|
|
|
|
| 64 |
def __init__(self):
|
| 65 |
self.mcp_client = MCPClient()
|
| 66 |
self.rag_engine = RAGEngine()
|
| 67 |
self.memory = MemoryStore()
|
| 68 |
self.thoughts: List[AgentThought] = []
|
| 69 |
self.current_context = {}
|
| 70 |
+
|
| 71 |
+
# -------------------------------------------
|
| 72 |
+
# RESET
|
| 73 |
+
# -------------------------------------------
|
| 74 |
+
|
| 75 |
def reset_context(self):
|
|
|
|
| 76 |
self.thoughts = []
|
| 77 |
self.current_context = {}
|
| 78 |
+
|
| 79 |
+
# -------------------------------------------
|
| 80 |
+
# PLANNING PHASE
|
| 81 |
+
# -------------------------------------------
|
| 82 |
+
|
| 83 |
async def plan(self, user_request: str, available_files: List[str] = None) -> List[AgentTask]:
|
| 84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
self.thoughts.append(AgentThought(
|
| 86 |
step=len(self.thoughts) + 1,
|
| 87 |
+
type="planning",
|
| 88 |
content=f"Analyzing request: {user_request}"
|
| 89 |
))
|
| 90 |
+
|
| 91 |
+
# List tools available through MCP
|
| 92 |
tools = await self.mcp_client.list_tools()
|
| 93 |
tool_descriptions = "\n".join([
|
| 94 |
+
f"- {tool['name']}: {tool.get('description', '')}" for tool in tools
|
|
|
|
| 95 |
])
|
| 96 |
+
|
| 97 |
+
# RAG context
|
| 98 |
relevant_docs = []
|
| 99 |
+
if user_request.strip():
|
| 100 |
relevant_docs = await self.rag_engine.search(user_request, k=3)
|
| 101 |
+
|
| 102 |
+
rag_context = "\n".join(
|
| 103 |
+
[doc["text"][:200] for doc in relevant_docs]
|
| 104 |
+
) if relevant_docs else "No relevant documents"
|
| 105 |
+
|
| 106 |
+
# Memory
|
| 107 |
memory_context = self.memory.get_relevant_memories(user_request)
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Build plan prompt
|
| 110 |
+
planning_prompt = f"""
|
| 111 |
+
You are an autonomous assistant. Create a JSON task plan.
|
| 112 |
+
|
| 113 |
+
USER REQUEST:
|
| 114 |
+
{user_request}
|
| 115 |
|
| 116 |
+
AVAILABLE FILES:
|
| 117 |
+
{', '.join(available_files) if available_files else 'None'}
|
| 118 |
|
| 119 |
AVAILABLE TOOLS:
|
| 120 |
{tool_descriptions}
|
| 121 |
|
| 122 |
+
RAG CONTEXT:
|
| 123 |
+
{rag_context}
|
| 124 |
|
| 125 |
MEMORY:
|
| 126 |
{memory_context}
|
| 127 |
|
| 128 |
+
Return ONLY valid JSON list of tasks like:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
[
|
| 130 |
{{
|
| 131 |
+
"id": "t1",
|
| 132 |
+
"description": "Extract text",
|
| 133 |
"tool": "ocr_extract_text",
|
| 134 |
+
"args": {{"file_path": "invoice.pdf"}}
|
| 135 |
}}
|
| 136 |
]
|
| 137 |
"""
|
| 138 |
+
|
| 139 |
self.thoughts.append(AgentThought(
|
| 140 |
step=len(self.thoughts) + 1,
|
| 141 |
+
type="planning",
|
| 142 |
+
content="Generating plan with LLM..."
|
| 143 |
))
|
| 144 |
+
|
| 145 |
try:
|
| 146 |
+
raw = await get_llm_response(planning_prompt, temperature=0.2)
|
| 147 |
+
txt = raw.strip()
|
| 148 |
+
|
| 149 |
+
# Remove markdown wrappers
|
| 150 |
+
if "```json" in txt:
|
| 151 |
+
txt = txt.split("```json")[1].split("```")[0].strip()
|
| 152 |
+
elif "```" in txt:
|
| 153 |
+
txt = txt.split("```")[1].split("```")[0].strip()
|
| 154 |
+
|
| 155 |
+
plan_json = json.loads(txt)
|
| 156 |
+
|
| 157 |
tasks = [
|
| 158 |
+
AgentTask(**task, status=TaskStatus.PENDING)
|
| 159 |
+
for task in plan_json
|
| 160 |
]
|
| 161 |
+
|
| 162 |
self.thoughts.append(AgentThought(
|
| 163 |
step=len(self.thoughts) + 1,
|
| 164 |
+
type="planning",
|
| 165 |
+
content=f"Plan created: {len(tasks)} tasks"
|
| 166 |
))
|
| 167 |
+
|
| 168 |
return tasks
|
| 169 |
+
|
| 170 |
except Exception as e:
|
| 171 |
self.thoughts.append(AgentThought(
|
| 172 |
step=len(self.thoughts) + 1,
|
| 173 |
+
type="planning",
|
| 174 |
+
content=f"Planning failed: {e}"
|
| 175 |
))
|
| 176 |
return []
|
| 177 |
+
|
| 178 |
+
# -------------------------------------------
|
| 179 |
+
# TOOL EXECUTION PHASE
|
| 180 |
+
# -------------------------------------------
|
| 181 |
+
|
| 182 |
async def execute_task(self, task: AgentTask) -> AgentTask:
|
| 183 |
+
|
|
|
|
| 184 |
self.thoughts.append(AgentThought(
|
| 185 |
step=len(self.thoughts) + 1,
|
| 186 |
+
type="tool_call",
|
| 187 |
+
content=f"Executing task: {task.description}",
|
| 188 |
tool_name=task.tool,
|
| 189 |
tool_args=task.args
|
| 190 |
))
|
| 191 |
+
|
| 192 |
task.status = TaskStatus.IN_PROGRESS
|
| 193 |
+
|
| 194 |
try:
|
|
|
|
| 195 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
| 196 |
+
|
|
|
|
| 197 |
task.status = TaskStatus.COMPLETED
|
| 198 |
+
task.result = result
|
| 199 |
+
|
| 200 |
self.thoughts.append(AgentThought(
|
| 201 |
step=len(self.thoughts) + 1,
|
| 202 |
+
type="tool_call",
|
| 203 |
content=f"✓ Completed: {task.description}",
|
| 204 |
tool_name=task.tool,
|
| 205 |
tool_result=result
|
| 206 |
))
|
| 207 |
+
|
|
|
|
|
|
|
| 208 |
except Exception as e:
|
|
|
|
| 209 |
task.status = TaskStatus.FAILED
|
| 210 |
+
task.error = str(e)
|
| 211 |
+
|
| 212 |
self.thoughts.append(AgentThought(
|
| 213 |
step=len(self.thoughts) + 1,
|
| 214 |
+
type="tool_call",
|
| 215 |
+
content=f"✗ Failed: {task.description} — {e}",
|
| 216 |
tool_name=task.tool
|
| 217 |
))
|
| 218 |
+
|
| 219 |
+
return task
|
| 220 |
+
|
| 221 |
+
# -------------------------------------------
|
| 222 |
+
# REFLECTION PHASE
|
| 223 |
+
# -------------------------------------------
|
| 224 |
+
|
| 225 |
+
async def reflect(self, tasks: List[AgentTask], request: str) -> str:
|
| 226 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
self.thoughts.append(AgentThought(
|
| 228 |
step=len(self.thoughts) + 1,
|
| 229 |
+
type="reflection",
|
| 230 |
+
content="Analyzing final results..."
|
| 231 |
))
|
| 232 |
+
|
| 233 |
+
results_string = []
|
| 234 |
+
for t in tasks:
|
| 235 |
+
if t.status == TaskStatus.COMPLETED:
|
| 236 |
+
short = str(t.result)[:200]
|
| 237 |
+
results_string.append(f"✓ {t.description}: {short}")
|
| 238 |
else:
|
| 239 |
+
results_string.append(f"✗ {t.description}: {t.error}")
|
|
|
|
|
|
|
| 240 |
|
| 241 |
+
reflection_prompt = f"""
|
| 242 |
+
Summarize the final results of the following tasks:
|
| 243 |
|
| 244 |
+
REQUEST:
|
| 245 |
+
{request}
|
| 246 |
|
| 247 |
+
RESULTS:
|
| 248 |
+
{chr(10).join(results_string)}
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
Give a clear, helpful answer:
|
| 251 |
+
- What succeeded
|
| 252 |
+
- What failed
|
| 253 |
+
- What files/events/emails were produced
|
| 254 |
+
- Next steps
|
| 255 |
"""
|
| 256 |
+
|
| 257 |
try:
|
| 258 |
+
answer = await get_llm_response(reflection_prompt, temperature=0.5)
|
| 259 |
+
|
| 260 |
self.thoughts.append(AgentThought(
|
| 261 |
step=len(self.thoughts) + 1,
|
| 262 |
+
type="answer",
|
| 263 |
+
content=answer
|
| 264 |
))
|
| 265 |
+
|
| 266 |
+
# Write to memory
|
| 267 |
self.memory.add_memory(
|
| 268 |
+
f"Request: {request}\nAnswer: {answer}",
|
| 269 |
+
metadata={"type": "task_completion", "timestamp": time.time()}
|
| 270 |
)
|
| 271 |
+
|
| 272 |
+
return answer
|
| 273 |
+
|
| 274 |
except Exception as e:
|
| 275 |
+
errmsg = f"Reflection failed: {e}"
|
| 276 |
+
|
| 277 |
self.thoughts.append(AgentThought(
|
| 278 |
step=len(self.thoughts) + 1,
|
| 279 |
+
type="answer",
|
| 280 |
+
content=errmsg
|
| 281 |
))
|
| 282 |
+
|
| 283 |
+
return errmsg
|
| 284 |
+
|
| 285 |
+
# -------------------------------------------
|
| 286 |
+
# STREAMING EXECUTION LOOP (FIXED)
|
| 287 |
+
# -------------------------------------------
|
| 288 |
+
|
| 289 |
+
async def execute(self, request: str, files: List[str] = None, stream_thoughts=False):
|
| 290 |
"""
|
| 291 |
+
If stream_thoughts=True → yields AgentThought objects
|
| 292 |
+
If stream_thoughts=False → returns (answer, thoughts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
"""
|
| 294 |
+
|
| 295 |
self.reset_context()
|
| 296 |
+
|
| 297 |
+
# --- PLANNING ---
|
| 298 |
+
tasks = await self.plan(request, files)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
if stream_thoughts:
|
| 300 |
+
for th in self.thoughts:
|
| 301 |
+
yield th
|
| 302 |
+
|
| 303 |
if not tasks:
|
| 304 |
+
# DO NOT return a value — async generator cannot return a value
|
| 305 |
+
thought = AgentThought(
|
| 306 |
step=len(self.thoughts) + 1,
|
| 307 |
+
type="answer",
|
| 308 |
+
content="Could not create plan. Try rephrasing."
|
| 309 |
)
|
| 310 |
+
self.thoughts.append(thought)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
if stream_thoughts:
|
| 312 |
+
yield thought
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
# --- EXECUTION ---
|
| 316 |
+
executed = []
|
| 317 |
+
for t in tasks:
|
| 318 |
+
done = await self.execute_task(t)
|
| 319 |
+
executed.append(done)
|
| 320 |
+
if stream_thoughts:
|
| 321 |
+
yield self.thoughts[-1]
|
| 322 |
+
|
| 323 |
+
# --- REFLECTION ---
|
| 324 |
+
final_answer = await self.reflect(executed, request)
|
| 325 |
if stream_thoughts:
|
| 326 |
+
yield self.thoughts[-1]
|
| 327 |
+
return
|
| 328 |
+
|
| 329 |
+
# If NOT streaming: return normal output
|
| 330 |
return final_answer, self.thoughts
|
| 331 |
+
|
| 332 |
+
# -------------------------------------------
|
| 333 |
+
# UTILITY
|
| 334 |
+
# -------------------------------------------
|
| 335 |
+
|
| 336 |
def get_thought_trace(self) -> List[Dict]:
|
| 337 |
+
return [asdict(t) for t in self.thoughts]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|