Spaces:
Running
Running
Update agent/agent_core.py
Browse files- agent/agent_core.py +211 -188
agent/agent_core.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
"""
|
| 2 |
LifeAdmin AI - Core Agent Logic
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
|
| 11 |
import asyncio
|
|
@@ -14,6 +16,7 @@ import time
|
|
| 14 |
from typing import List, Dict, Any, Optional
|
| 15 |
from dataclasses import dataclass, asdict
|
| 16 |
from enum import Enum
|
|
|
|
| 17 |
|
| 18 |
from agent.mcp_client import MCPClient
|
| 19 |
from agent.rag_engine import RAGEngine
|
|
@@ -21,10 +24,9 @@ from agent.memory import MemoryStore
|
|
| 21 |
from utils.llm_utils import get_llm_response
|
| 22 |
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
#
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
class TaskStatus(Enum):
|
| 29 |
PENDING = "pending"
|
| 30 |
IN_PROGRESS = "in_progress"
|
|
@@ -35,7 +37,7 @@ class TaskStatus(Enum):
|
|
| 35 |
@dataclass
|
| 36 |
class AgentThought:
|
| 37 |
step: int
|
| 38 |
-
type: str
|
| 39 |
content: str
|
| 40 |
tool_name: Optional[str] = None
|
| 41 |
tool_args: Optional[Dict] = None
|
|
@@ -58,178 +60,125 @@ class AgentTask:
|
|
| 58 |
error: Optional[str] = None
|
| 59 |
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
#
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
class LifeAdminAgent:
|
| 66 |
-
|
| 67 |
def __init__(self):
|
| 68 |
self.mcp_client = MCPClient()
|
| 69 |
self.rag_engine = RAGEngine()
|
| 70 |
self.memory = MemoryStore()
|
| 71 |
self.thoughts: List[AgentThought] = []
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
def reset(self):
|
|
|
|
| 77 |
self.thoughts = []
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
-
async def
|
| 83 |
-
"""
|
| 84 |
-
Expected format: [{ "path": "...", "name": "..." }]
|
| 85 |
-
Your UI calls this after uploads.
|
| 86 |
-
"""
|
| 87 |
-
|
| 88 |
-
for f in files:
|
| 89 |
-
try:
|
| 90 |
-
await self.rag_engine.add_document(
|
| 91 |
-
file_path=f["path"],
|
| 92 |
-
metadata={"filename": f["name"]}
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
self.thoughts.append(AgentThought(
|
| 96 |
-
step=len(self.thoughts) + 1,
|
| 97 |
-
type="planning",
|
| 98 |
-
content=f"Added to RAG: {f['name']}"
|
| 99 |
-
))
|
| 100 |
-
|
| 101 |
-
except Exception as e:
|
| 102 |
-
self.thoughts.append(AgentThought(
|
| 103 |
-
step=len(self.thoughts) + 1,
|
| 104 |
-
type="planning",
|
| 105 |
-
content=f"Failed indexing: {f['name']}, error={str(e)}"
|
| 106 |
-
))
|
| 107 |
-
|
| 108 |
-
return True
|
| 109 |
-
|
| 110 |
-
# ----------------------------------------------------
|
| 111 |
-
# MANUAL TOOL CALL (Used in Manual Dashboard)
|
| 112 |
-
# ----------------------------------------------------
|
| 113 |
-
async def manual_tool_call(self, tool: str, args: Dict[str, Any]):
|
| 114 |
-
"""
|
| 115 |
-
Your UI calls this for:
|
| 116 |
-
- OCR
|
| 117 |
-
- PDF extract
|
| 118 |
-
- email draft
|
| 119 |
-
- calendar event
|
| 120 |
-
- file tools etc.
|
| 121 |
-
"""
|
| 122 |
-
|
| 123 |
self.thoughts.append(AgentThought(
|
| 124 |
step=len(self.thoughts) + 1,
|
| 125 |
-
type="tool_call",
|
| 126 |
-
content=f"Manual call: {tool}",
|
| 127 |
-
tool_name=tool,
|
| 128 |
-
tool_args=args
|
| 129 |
-
))
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
result = await self.mcp_client.call_tool(tool, args)
|
| 133 |
-
|
| 134 |
-
self.thoughts.append(AgentThought(
|
| 135 |
-
step=len(self.thoughts) + 1,
|
| 136 |
-
type="tool_call",
|
| 137 |
-
content="Manual tool execution succeeded",
|
| 138 |
-
tool_name=tool,
|
| 139 |
-
tool_result=result
|
| 140 |
-
))
|
| 141 |
-
|
| 142 |
-
return result
|
| 143 |
-
|
| 144 |
-
except Exception as e:
|
| 145 |
-
self.thoughts.append(AgentThought(
|
| 146 |
-
step=len(self.thoughts) + 1,
|
| 147 |
-
type="tool_call",
|
| 148 |
-
content=f"Manual tool failed: {str(e)}",
|
| 149 |
-
tool_name=tool
|
| 150 |
-
))
|
| 151 |
-
return {"error": str(e)}
|
| 152 |
-
|
| 153 |
-
# ----------------------------------------------------
|
| 154 |
-
# PLAN TASKS
|
| 155 |
-
# ----------------------------------------------------
|
| 156 |
-
async def plan(self, user_request: str, files: List[str] = None):
|
| 157 |
-
self.thoughts.append(AgentThought(
|
| 158 |
-
step=len(self.thoughts)+1,
|
| 159 |
type="planning",
|
| 160 |
-
content=f"Analyzing
|
| 161 |
))
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
|
| 172 |
-
You are a task planner. USER REQUEST:
|
| 173 |
-
{user_request}
|
| 174 |
|
| 175 |
-
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
{tool_desc}
|
| 179 |
-
|
| 180 |
-
RAG CONTEXT:
|
| 181 |
{rag_context}
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
[
|
| 188 |
{{
|
| 189 |
-
"id": "
|
| 190 |
-
"description": "Extract
|
| 191 |
"tool": "ocr_extract_text",
|
| 192 |
-
"args": {{"file_path": "
|
| 193 |
}}
|
| 194 |
]
|
| 195 |
"""
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
txt = txt.split("```json")[1].split("```")[0].strip()
|
| 202 |
|
| 203 |
try:
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
self.thoughts.append(AgentThought(
|
| 209 |
-
step=len(self.thoughts)+1,
|
| 210 |
type="planning",
|
| 211 |
-
content="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
))
|
| 213 |
return []
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
self.thoughts.append(AgentThought(
|
| 216 |
-
step=len(self.thoughts)+1,
|
| 217 |
-
type="planning",
|
| 218 |
-
content=f"Created {len(tasks)} tasks"
|
| 219 |
-
))
|
| 220 |
-
return tasks
|
| 221 |
-
|
| 222 |
-
# ----------------------------------------------------
|
| 223 |
-
# EXECUTE A SINGLE TASK
|
| 224 |
-
# ----------------------------------------------------
|
| 225 |
-
async def execute_task(self, task: AgentTask):
|
| 226 |
-
self.thoughts.append(AgentThought(
|
| 227 |
-
step=len(self.thoughts)+1,
|
| 228 |
type="tool_call",
|
| 229 |
-
content=f"Executing: {task.description}",
|
| 230 |
tool_name=task.tool,
|
| 231 |
tool_args=task.args
|
| 232 |
))
|
|
|
|
| 233 |
|
| 234 |
try:
|
| 235 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
|
@@ -237,86 +186,160 @@ Return JSON ONLY:
|
|
| 237 |
task.status = TaskStatus.COMPLETED
|
| 238 |
|
| 239 |
self.thoughts.append(AgentThought(
|
| 240 |
-
step=len(self.thoughts)+1,
|
| 241 |
type="tool_call",
|
| 242 |
-
content=f"
|
| 243 |
tool_name=task.tool,
|
| 244 |
tool_result=result
|
| 245 |
))
|
| 246 |
-
|
| 247 |
except Exception as e:
|
| 248 |
task.status = TaskStatus.FAILED
|
| 249 |
task.error = str(e)
|
| 250 |
-
|
| 251 |
self.thoughts.append(AgentThought(
|
| 252 |
-
step=len(self.thoughts)+1,
|
| 253 |
type="tool_call",
|
| 254 |
-
content=f"
|
| 255 |
tool_name=task.tool
|
| 256 |
))
|
|
|
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
#
|
| 261 |
-
|
| 262 |
-
# ----------------------------------------------------
|
| 263 |
-
async def reflect(self, tasks: List[AgentTask], original: str):
|
| 264 |
self.thoughts.append(AgentThought(
|
| 265 |
-
step=len(self.thoughts)+1,
|
| 266 |
type="reflection",
|
| 267 |
-
content="
|
| 268 |
))
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
if t.status == TaskStatus.COMPLETED
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
{
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
{results_txt}
|
| 285 |
"""
|
| 286 |
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
self.thoughts.append(AgentThought(
|
| 290 |
-
step=len(self.thoughts)+1,
|
| 291 |
type="answer",
|
| 292 |
content=answer
|
| 293 |
))
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
return answer
|
| 300 |
|
| 301 |
-
#
|
| 302 |
-
#
|
| 303 |
-
#
|
| 304 |
-
async def execute(self, user_request: str, files: List[str] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
self.reset()
|
| 306 |
|
| 307 |
tasks = await self.plan(user_request, files)
|
| 308 |
if not tasks:
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
executed = []
|
| 312 |
for t in tasks:
|
| 313 |
-
|
|
|
|
| 314 |
|
| 315 |
-
|
| 316 |
-
return
|
| 317 |
|
| 318 |
-
#
|
| 319 |
-
#
|
| 320 |
-
#
|
| 321 |
-
def get_thought_trace(self):
|
| 322 |
return [asdict(t) for t in self.thoughts]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
LifeAdmin AI - Core Agent Logic
|
| 3 |
+
Final stable version (HF / Gradio-compatible).
|
| 4 |
+
Provides:
|
| 5 |
+
- plan()
|
| 6 |
+
- execute_task()
|
| 7 |
+
- reflect()
|
| 8 |
+
- execute() -> (final_answer, thoughts)
|
| 9 |
+
- process_files_to_rag()
|
| 10 |
+
- manual_tool_call()
|
| 11 |
"""
|
| 12 |
|
| 13 |
import asyncio
|
|
|
|
| 16 |
from typing import List, Dict, Any, Optional
|
| 17 |
from dataclasses import dataclass, asdict
|
| 18 |
from enum import Enum
|
| 19 |
+
from pathlib import Path
|
| 20 |
|
| 21 |
from agent.mcp_client import MCPClient
|
| 22 |
from agent.rag_engine import RAGEngine
|
|
|
|
| 24 |
from utils.llm_utils import get_llm_response
|
| 25 |
|
| 26 |
|
| 27 |
+
# -------------------------
|
| 28 |
+
# Data models
|
| 29 |
+
# -------------------------
|
|
|
|
| 30 |
class TaskStatus(Enum):
|
| 31 |
PENDING = "pending"
|
| 32 |
IN_PROGRESS = "in_progress"
|
|
|
|
| 37 |
@dataclass
|
| 38 |
class AgentThought:
|
| 39 |
step: int
|
| 40 |
+
type: str # 'planning', 'tool_call', 'reflection', 'answer'
|
| 41 |
content: str
|
| 42 |
tool_name: Optional[str] = None
|
| 43 |
tool_args: Optional[Dict] = None
|
|
|
|
| 60 |
error: Optional[str] = None
|
| 61 |
|
| 62 |
|
| 63 |
+
# -------------------------
|
| 64 |
+
# LifeAdminAgent
|
| 65 |
+
# -------------------------
|
|
|
|
| 66 |
class LifeAdminAgent:
|
|
|
|
| 67 |
def __init__(self):
|
| 68 |
self.mcp_client = MCPClient()
|
| 69 |
self.rag_engine = RAGEngine()
|
| 70 |
self.memory = MemoryStore()
|
| 71 |
self.thoughts: List[AgentThought] = []
|
| 72 |
|
| 73 |
+
# ensure data directories exist
|
| 74 |
+
Path("data/uploads").mkdir(parents=True, exist_ok=True)
|
| 75 |
+
Path("data/outputs").mkdir(parents=True, exist_ok=True)
|
| 76 |
+
|
| 77 |
def reset(self):
|
| 78 |
+
"""Reset thoughts / context for a new request"""
|
| 79 |
self.thoughts = []
|
| 80 |
|
| 81 |
+
# ---------------------
|
| 82 |
+
# Planning
|
| 83 |
+
# ---------------------
|
| 84 |
+
async def plan(self, user_request: str, files: List[str] = None) -> List[AgentTask]:
|
| 85 |
+
"""Create an execution plan (list of AgentTask) using LLM + RAG + memory"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
self.thoughts.append(AgentThought(
|
| 87 |
step=len(self.thoughts) + 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
type="planning",
|
| 89 |
+
content=f"Analyzing request: {user_request}"
|
| 90 |
))
|
| 91 |
|
| 92 |
+
# list tools
|
| 93 |
+
try:
|
| 94 |
+
tools = await self.mcp_client.list_tools()
|
| 95 |
+
except Exception:
|
| 96 |
+
tools = []
|
| 97 |
+
tool_desc = "\n".join([f"- {t['name']}: {t.get('description','')}" for t in tools]) if tools else "No tool metadata available"
|
| 98 |
|
| 99 |
+
# RAG search
|
| 100 |
+
rag_docs = []
|
| 101 |
+
if user_request and user_request.strip():
|
| 102 |
+
try:
|
| 103 |
+
rag_docs = await self.rag_engine.search(user_request, k=3)
|
| 104 |
+
except Exception:
|
| 105 |
+
rag_docs = []
|
| 106 |
|
| 107 |
+
rag_context = "\n".join([d.get("text","")[:250] for d in rag_docs]) if rag_docs else "No relevant docs"
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
memory_context = self.memory.get_relevant_memories(user_request) if self.memory else "No memory"
|
| 110 |
|
| 111 |
+
planning_prompt = f"""
|
| 112 |
+
You are an autonomous life admin assistant. Produce a JSON array of tasks (no extra text).
|
| 113 |
+
User request: {user_request}
|
| 114 |
+
Available files: {files or []}
|
| 115 |
+
Available tools:
|
| 116 |
{tool_desc}
|
| 117 |
+
RAG context:
|
|
|
|
| 118 |
{rag_context}
|
| 119 |
+
Memory:
|
| 120 |
+
{memory_context}
|
| 121 |
|
| 122 |
+
Return ONLY valid JSON array of tasks. Each task must contain:
|
| 123 |
+
- id (string)
|
| 124 |
+
- description (string)
|
| 125 |
+
- tool (one of the tool names)
|
| 126 |
+
- args (a JSON object)
|
| 127 |
|
| 128 |
+
Example:
|
| 129 |
[
|
| 130 |
{{
|
| 131 |
+
"id": "task_1",
|
| 132 |
+
"description": "Extract text from invoice.pdf",
|
| 133 |
"tool": "ocr_extract_text",
|
| 134 |
+
"args": {{"file_path": "data/uploads/invoice.pdf", "language": "en"}}
|
| 135 |
}}
|
| 136 |
]
|
| 137 |
"""
|
| 138 |
+
self.thoughts.append(AgentThought(
|
| 139 |
+
step=len(self.thoughts) + 1,
|
| 140 |
+
type="planning",
|
| 141 |
+
content="Asking LLM to create a plan..."
|
| 142 |
+
))
|
|
|
|
| 143 |
|
| 144 |
try:
|
| 145 |
+
plan_text = await get_llm_response(planning_prompt, temperature=0.2)
|
| 146 |
+
plan_text = plan_text.strip()
|
| 147 |
|
| 148 |
+
# try to extract JSON if wrapped in code fences
|
| 149 |
+
if "```json" in plan_text:
|
| 150 |
+
plan_text = plan_text.split("```json", 1)[1].split("```", 1)[0].strip()
|
| 151 |
+
elif "```" in plan_text:
|
| 152 |
+
plan_text = plan_text.split("```", 1)[1].split("```", 1)[0].strip()
|
| 153 |
+
|
| 154 |
+
tasks_data = json.loads(plan_text)
|
| 155 |
+
tasks = [AgentTask(**t) for t in tasks_data]
|
| 156 |
self.thoughts.append(AgentThought(
|
| 157 |
+
step=len(self.thoughts) + 1,
|
| 158 |
type="planning",
|
| 159 |
+
content=f"Plan created with {len(tasks)} tasks."
|
| 160 |
+
))
|
| 161 |
+
return tasks
|
| 162 |
+
except Exception as e:
|
| 163 |
+
self.thoughts.append(AgentThought(
|
| 164 |
+
step=len(self.thoughts) + 1,
|
| 165 |
+
type="planning",
|
| 166 |
+
content=f"Planning failed: {str(e)}"
|
| 167 |
))
|
| 168 |
return []
|
| 169 |
|
| 170 |
+
# ---------------------
|
| 171 |
+
# Execution of a single task
|
| 172 |
+
# ---------------------
|
| 173 |
+
async def execute_task(self, task: AgentTask) -> AgentTask:
|
| 174 |
self.thoughts.append(AgentThought(
|
| 175 |
+
step=len(self.thoughts) + 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
type="tool_call",
|
| 177 |
+
content=f"Executing task: {task.description}",
|
| 178 |
tool_name=task.tool,
|
| 179 |
tool_args=task.args
|
| 180 |
))
|
| 181 |
+
task.status = TaskStatus.IN_PROGRESS
|
| 182 |
|
| 183 |
try:
|
| 184 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
|
|
|
| 186 |
task.status = TaskStatus.COMPLETED
|
| 187 |
|
| 188 |
self.thoughts.append(AgentThought(
|
| 189 |
+
step=len(self.thoughts) + 1,
|
| 190 |
type="tool_call",
|
| 191 |
+
content=f"Completed: {task.description}",
|
| 192 |
tool_name=task.tool,
|
| 193 |
tool_result=result
|
| 194 |
))
|
| 195 |
+
return task
|
| 196 |
except Exception as e:
|
| 197 |
task.status = TaskStatus.FAILED
|
| 198 |
task.error = str(e)
|
|
|
|
| 199 |
self.thoughts.append(AgentThought(
|
| 200 |
+
step=len(self.thoughts) + 1,
|
| 201 |
type="tool_call",
|
| 202 |
+
content=f"Failed: {task.description} - {str(e)}",
|
| 203 |
tool_name=task.tool
|
| 204 |
))
|
| 205 |
+
return task
|
| 206 |
|
| 207 |
+
# ---------------------
|
| 208 |
+
# Reflection / final answer
|
| 209 |
+
# ---------------------
|
| 210 |
+
async def reflect(self, tasks: List[AgentTask], original_request: str) -> str:
|
|
|
|
|
|
|
| 211 |
self.thoughts.append(AgentThought(
|
| 212 |
+
step=len(self.thoughts) + 1,
|
| 213 |
type="reflection",
|
| 214 |
+
content="Synthesizing results..."
|
| 215 |
))
|
| 216 |
|
| 217 |
+
summary_lines = []
|
| 218 |
+
for t in tasks:
|
| 219 |
+
if t.status == TaskStatus.COMPLETED:
|
| 220 |
+
summary_lines.append(f"✓ {t.description}: {str(t.result)[:300]}")
|
| 221 |
+
else:
|
| 222 |
+
summary_lines.append(f"✗ {t.description}: {t.error}")
|
| 223 |
+
|
| 224 |
+
reflection_prompt = f"""
|
| 225 |
+
You are the agent summarizing execution results.
|
| 226 |
+
Original request: {original_request}
|
| 227 |
+
Execution summary:
|
| 228 |
+
{chr(10).join(summary_lines)}
|
| 229 |
+
|
| 230 |
+
Write a clear, friendly reply telling the user what was done, outputs created, any errors, and next steps.
|
|
|
|
| 231 |
"""
|
| 232 |
|
| 233 |
+
try:
|
| 234 |
+
answer = await get_llm_response(reflection_prompt, temperature=0.5)
|
| 235 |
+
except Exception as e:
|
| 236 |
+
answer = f"Reflection failed: {str(e)}"
|
| 237 |
|
| 238 |
self.thoughts.append(AgentThought(
|
| 239 |
+
step=len(self.thoughts) + 1,
|
| 240 |
type="answer",
|
| 241 |
content=answer
|
| 242 |
))
|
| 243 |
|
| 244 |
+
# store short memory
|
| 245 |
+
try:
|
| 246 |
+
self.memory.add_memory(
|
| 247 |
+
content=f"Request: {original_request}\nResult: {answer}",
|
| 248 |
+
memory_type="task_completion",
|
| 249 |
+
metadata={"timestamp": time.time()}
|
| 250 |
+
)
|
| 251 |
+
except Exception:
|
| 252 |
+
pass
|
| 253 |
+
|
| 254 |
return answer
|
| 255 |
|
| 256 |
+
# ---------------------
|
| 257 |
+
# Main execute (no streaming)
|
| 258 |
+
# ---------------------
|
| 259 |
+
async def execute(self, user_request: str, files: List[str] = None) -> (str, List[AgentThought]):
|
| 260 |
+
"""
|
| 261 |
+
Run plan -> execute each task -> reflect
|
| 262 |
+
Returns: (final_answer, list_of_thoughts)
|
| 263 |
+
"""
|
| 264 |
self.reset()
|
| 265 |
|
| 266 |
tasks = await self.plan(user_request, files)
|
| 267 |
if not tasks:
|
| 268 |
+
err_msg = "Could not create an execution plan. Try rephrasing your request."
|
| 269 |
+
self.thoughts.append(AgentThought(
|
| 270 |
+
step=len(self.thoughts) + 1,
|
| 271 |
+
type="answer",
|
| 272 |
+
content=err_msg
|
| 273 |
+
))
|
| 274 |
+
return err_msg, self.thoughts
|
| 275 |
|
| 276 |
executed = []
|
| 277 |
for t in tasks:
|
| 278 |
+
executed_task = await self.execute_task(t)
|
| 279 |
+
executed.append(executed_task)
|
| 280 |
|
| 281 |
+
final_answer = await self.reflect(executed, user_request)
|
| 282 |
+
return final_answer, self.thoughts
|
| 283 |
|
| 284 |
+
# ---------------------
|
| 285 |
+
# Utility: provide thought trace for UI
|
| 286 |
+
# ---------------------
|
| 287 |
+
def get_thought_trace(self) -> List[Dict[str, Any]]:
|
| 288 |
return [asdict(t) for t in self.thoughts]
|
| 289 |
+
|
| 290 |
+
# ---------------------
|
| 291 |
+
# Add uploaded files into RAG index (helper used by UI)
|
| 292 |
+
# ---------------------
|
| 293 |
+
async def process_files_to_rag(self, files: List[Dict[str, str]]):
|
| 294 |
+
"""
|
| 295 |
+
files: list of dicts {'path': <path>, 'name': <filename>}
|
| 296 |
+
Extract text using available local tools (pdf/text/ocr) and add to RAG.
|
| 297 |
+
"""
|
| 298 |
+
for file_info in files:
|
| 299 |
+
path = file_info.get("path")
|
| 300 |
+
name = file_info.get("name", Path(path).name if path else "")
|
| 301 |
+
try:
|
| 302 |
+
text = ""
|
| 303 |
+
if path and path.lower().endswith(".pdf"):
|
| 304 |
+
# try utils.pdf_utils
|
| 305 |
+
try:
|
| 306 |
+
from utils.pdf_utils import extract_text_from_pdf
|
| 307 |
+
text = extract_text_from_pdf(path)
|
| 308 |
+
except Exception:
|
| 309 |
+
text = ""
|
| 310 |
+
elif path and path.lower().endswith((".png", ".jpg", ".jpeg", ".tiff")):
|
| 311 |
+
# use MCP OCR tool (via client) or local easyocr
|
| 312 |
+
try:
|
| 313 |
+
result = await self.mcp_client.call_tool("ocr_extract_text", {"file_path": path, "language": "en"})
|
| 314 |
+
text = result.get("text", "")
|
| 315 |
+
except Exception:
|
| 316 |
+
text = ""
|
| 317 |
+
else:
|
| 318 |
+
# read plain text files
|
| 319 |
+
try:
|
| 320 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 321 |
+
text = f.read()
|
| 322 |
+
except Exception:
|
| 323 |
+
text = ""
|
| 324 |
+
|
| 325 |
+
if text and len(text.strip()) > 20:
|
| 326 |
+
try:
|
| 327 |
+
await self.rag_engine.add_document(text=text, metadata={"filename": name, "path": path})
|
| 328 |
+
except Exception:
|
| 329 |
+
pass
|
| 330 |
+
except Exception:
|
| 331 |
+
continue
|
| 332 |
+
|
| 333 |
+
# ---------------------
|
| 334 |
+
# Manual tool call wrapper for UI (guarantees consistent return shape)
|
| 335 |
+
# ---------------------
|
| 336 |
+
async def manual_tool_call(self, tool_name: str, args: Dict[str, Any]) -> Dict[str, Any]:
|
| 337 |
+
"""
|
| 338 |
+
Calls an MCP tool (via MCPClient). Returns dict:
|
| 339 |
+
{'success': bool, 'result': <tool_result> or None, 'error': <err_msg> or None}
|
| 340 |
+
"""
|
| 341 |
+
try:
|
| 342 |
+
result = await self.mcp_client.call_tool(tool_name, args)
|
| 343 |
+
return {"success": True, "result": result, "error": None}
|
| 344 |
+
except Exception as e:
|
| 345 |
+
return {"success": False, "result": None, "error": str(e)}
|