Spaces:
Running
Running
Create agent/rag_engine.py
Browse files- agent/rag_engine.py +146 -0
agent/rag_engine.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
+
from chromadb.config import Settings
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from typing import List, Dict, Any
|
| 5 |
+
import uuid
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class RAGEngine:
|
| 10 |
+
"""RAG engine using ChromaDB for vector storage and retrieval"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, persist_directory: str = "data/chroma_db"):
|
| 13 |
+
"""Initialize RAG engine with ChromaDB"""
|
| 14 |
+
Path(persist_directory).mkdir(parents=True, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
# Initialize ChromaDB client
|
| 17 |
+
self.client = chromadb.PersistentClient(path=persist_directory)
|
| 18 |
+
|
| 19 |
+
# Get or create collection
|
| 20 |
+
self.collection = self.client.get_or_create_collection(
|
| 21 |
+
name="documents",
|
| 22 |
+
metadata={"hnsw:space": "cosine"}
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Initialize embedding model
|
| 26 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 27 |
+
|
| 28 |
+
async def add_document(
|
| 29 |
+
self,
|
| 30 |
+
text: str,
|
| 31 |
+
metadata: Dict[str, Any] = None
|
| 32 |
+
) -> str:
|
| 33 |
+
"""
|
| 34 |
+
Add document to RAG index
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
text: Document text
|
| 38 |
+
metadata: Document metadata
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
Document ID
|
| 42 |
+
"""
|
| 43 |
+
doc_id = str(uuid.uuid4())
|
| 44 |
+
|
| 45 |
+
# Generate embedding
|
| 46 |
+
embedding = self.embedding_model.encode(text).tolist()
|
| 47 |
+
|
| 48 |
+
# Add to collection
|
| 49 |
+
self.collection.add(
|
| 50 |
+
ids=[doc_id],
|
| 51 |
+
embeddings=[embedding],
|
| 52 |
+
documents=[text],
|
| 53 |
+
metadatas=[metadata or {}]
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return doc_id
|
| 57 |
+
|
| 58 |
+
async def add_documents(
|
| 59 |
+
self,
|
| 60 |
+
texts: List[str],
|
| 61 |
+
metadatas: List[Dict[str, Any]] = None
|
| 62 |
+
) -> List[str]:
|
| 63 |
+
"""Add multiple documents at once"""
|
| 64 |
+
doc_ids = [str(uuid.uuid4()) for _ in texts]
|
| 65 |
+
|
| 66 |
+
# Generate embeddings
|
| 67 |
+
embeddings = self.embedding_model.encode(texts).tolist()
|
| 68 |
+
|
| 69 |
+
# Add to collection
|
| 70 |
+
self.collection.add(
|
| 71 |
+
ids=doc_ids,
|
| 72 |
+
embeddings=embeddings,
|
| 73 |
+
documents=texts,
|
| 74 |
+
metadatas=metadatas or [{} for _ in texts]
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
return doc_ids
|
| 78 |
+
|
| 79 |
+
async def search(
|
| 80 |
+
self,
|
| 81 |
+
query: str,
|
| 82 |
+
k: int = 5,
|
| 83 |
+
filter_metadata: Dict[str, Any] = None
|
| 84 |
+
) -> List[Dict[str, Any]]:
|
| 85 |
+
"""
|
| 86 |
+
Search for relevant documents
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
query: Search query
|
| 90 |
+
k: Number of results
|
| 91 |
+
filter_metadata: Metadata filters
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
List of matching documents with scores
|
| 95 |
+
"""
|
| 96 |
+
# Generate query embedding
|
| 97 |
+
query_embedding = self.embedding_model.encode(query).tolist()
|
| 98 |
+
|
| 99 |
+
# Search
|
| 100 |
+
results = self.collection.query(
|
| 101 |
+
query_embeddings=[query_embedding],
|
| 102 |
+
n_results=k,
|
| 103 |
+
where=filter_metadata
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Format results
|
| 107 |
+
documents = []
|
| 108 |
+
if results['documents'] and results['documents'][0]:
|
| 109 |
+
for i, doc in enumerate(results['documents'][0]):
|
| 110 |
+
documents.append({
|
| 111 |
+
'id': results['ids'][0][i],
|
| 112 |
+
'text': doc,
|
| 113 |
+
'metadata': results['metadatas'][0][i] if results['metadatas'] else {},
|
| 114 |
+
'distance': results['distances'][0][i] if results['distances'] else 0
|
| 115 |
+
})
|
| 116 |
+
|
| 117 |
+
return documents
|
| 118 |
+
|
| 119 |
+
async def get_document(self, doc_id: str) -> Dict[str, Any]:
|
| 120 |
+
"""Get document by ID"""
|
| 121 |
+
result = self.collection.get(ids=[doc_id])
|
| 122 |
+
|
| 123 |
+
if result['documents']:
|
| 124 |
+
return {
|
| 125 |
+
'id': doc_id,
|
| 126 |
+
'text': result['documents'][0],
|
| 127 |
+
'metadata': result['metadatas'][0] if result['metadatas'] else {}
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
return None
|
| 131 |
+
|
| 132 |
+
async def delete_document(self, doc_id: str):
|
| 133 |
+
"""Delete document by ID"""
|
| 134 |
+
self.collection.delete(ids=[doc_id])
|
| 135 |
+
|
| 136 |
+
async def count_documents(self) -> int:
|
| 137 |
+
"""Get total number of documents"""
|
| 138 |
+
return self.collection.count()
|
| 139 |
+
|
| 140 |
+
async def clear_all(self):
|
| 141 |
+
"""Clear all documents"""
|
| 142 |
+
self.client.delete_collection(name="documents")
|
| 143 |
+
self.collection = self.client.get_or_create_collection(
|
| 144 |
+
name="documents",
|
| 145 |
+
metadata={"hnsw:space": "cosine"}
|
| 146 |
+
)
|