Spaces:
Running
Running
File size: 15,993 Bytes
b7d08cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""
結果提取器 - 從 OR-Tools 結果提取路線和任務詳情
"""
from typing import List, Dict, Tuple, Any, Set, Optional
from datetime import datetime, timedelta
import numpy as np
from ortools.constraint_solver import pywrapcp
from src.infra.logger import get_logger
from ..models.internal_models import (
_Task,
_Graph,
_TSPTWResult,
_RouteStep,
_TaskDetail,
_AlternativePOI,
_OptimizationMetrics, # ✅ 確保有 import 這個
)
from ..graph.time_window_handler import TimeWindowHandler
logger = get_logger(__name__)
class SolutionExtractor:
"""
結果提取器
職責:
- 從 OR-Tools 結果提取路線
- 計算總時間/距離
- 構建任務詳情(包含備選 POI)
- ✅ 計算快樂表指標 (Metrics)
"""
def __init__(self):
self.tw_handler = TimeWindowHandler()
def extract(
self,
routing: pywrapcp.RoutingModel,
manager: pywrapcp.RoutingIndexManager,
solution: pywrapcp.Assignment,
time_dimension: pywrapcp.RoutingDimension,
start_time: datetime,
graph: _Graph,
tasks: List[_Task],
alt_k: int,
return_to_start: bool,
) -> _TSPTWResult:
"""
提取完整結果
"""
duration_matrix = graph.duration_matrix
distance_matrix = graph.distance_matrix
node_meta = graph.node_meta
locations = graph.locations
route: List[_RouteStep] = []
visited_task_ids = set()
total_travel_time = 0
total_travel_distance = 0
sequence_nodes: List[int] = []
sequence_indices: List[int] = []
# 1. 提取訪問順序
idx = routing.Start(0)
while not routing.IsEnd(idx):
node = manager.IndexToNode(idx)
sequence_indices.append(idx)
sequence_nodes.append(node)
idx = solution.Value(routing.NextVar(idx))
end_node = manager.IndexToNode(idx)
sequence_indices.append(idx)
sequence_nodes.append(end_node)
# 如果不要顯示回到出發點,就把最後這個 depot 去掉
if not return_to_start:
if len(sequence_nodes) >= 2 and node_meta[sequence_nodes[-1]]["type"] == "depot":
sequence_nodes = sequence_nodes[:-1]
sequence_indices = sequence_indices[:-1]
# 2. 構建前後節點映射(用於計算備選 POI)
node_prev_next: Dict[int, Tuple[int, int]] = {}
for i, node in enumerate(sequence_nodes):
prev_node = sequence_nodes[i - 1] if i > 0 else sequence_nodes[0]
next_node = sequence_nodes[i + 1] if i < len(sequence_nodes) - 1 else sequence_nodes[-1]
node_prev_next[node] = (prev_node, next_node)
task_nodes: Dict[str, List[int]] = {}
chosen_node_per_task: Dict[str, int] = {}
arrival_sec_map: Dict[int, int] = {}
task_service_duration_map = {
i: task.service_duration_min
for i, task in enumerate(tasks)
}
# 3. 提取路線和訪問信息
for step_idx, (routing_index, node) in enumerate(zip(sequence_indices, sequence_nodes)):
meta = node_meta[node]
time_var = time_dimension.CumulVar(routing_index)
arr_sec = solution.Value(time_var)
arr_dt = start_time + timedelta(seconds=int(arr_sec))
arrival_sec_map[node] = arr_sec
if meta["type"] == "depot":
step = _RouteStep(
step=step_idx,
node_index=node,
arrival_time=arr_dt.isoformat(),
departure_time=arr_dt.isoformat(),
type="depot",
)
else:
task_id = meta["task_id"]
task_idx = meta["task_idx"]
service_duration_min = task_service_duration_map.get(task_idx, 5)
service_duration_sec = service_duration_min * 60
dep_dt = arr_dt + timedelta(seconds=service_duration_sec)
visited_task_ids.add(task_id)
task_nodes.setdefault(task_id, [])
task_nodes[task_id].append(node)
if task_id not in chosen_node_per_task:
chosen_node_per_task[task_id] = node
step = _RouteStep(
step=step_idx,
node_index=node,
arrival_time=arr_dt.isoformat(),
departure_time=dep_dt.isoformat(),
type="task_poi",
task_id=task_id,
poi_id=meta["poi_id"],
service_duration_min=service_duration_min, # 確保回傳服務時間
)
route.append(step)
# 4. 補充未訪問的節點到 task_nodes(用於備選 POI 計算)
for node in range(1, len(node_meta)):
meta = node_meta[node]
if meta["type"] != "poi":
continue
task_id = meta["task_id"]
task_nodes.setdefault(task_id, [])
if node not in task_nodes[task_id]:
task_nodes[task_id].append(node)
# 5. 計算優化後的總距離 (Optimized Distance)
for i in range(len(sequence_nodes) - 1):
n1 = sequence_nodes[i]
n2 = sequence_nodes[i + 1]
total_travel_distance += distance_matrix[n1, n2]
total_travel_time += duration_matrix[n1, n2] # 這是純交通時間
# 6. 計算快樂表 metrics (Baseline vs Optimized)
# 6.1 計算總服務時間 (分子)
total_service_time_sec = sum(
tasks[node_meta[node]["task_idx"]].service_duration_sec
for node in sequence_nodes
if node_meta[node]["type"] == "poi"
)
# 6.2 優化後的總耗時 (Total Duration = Finish - Start)
# 注意: 這是包含 Waiting Time 的總工時
#last_node_idx = sequence_indices[-1]
#optimized_total_duration_sec = solution.Value(time_dimension.CumulVar(last_node_idx))
optimized_pure_duration = total_travel_time + total_service_time_sec
# 6.3 執行計算
metrics = self._calculate_metrics(
graph=graph,
tasks=tasks,
visited_task_ids=visited_task_ids,
optimized_dist=total_travel_distance,
optimized_duration=optimized_pure_duration,
total_service_time=total_service_time_sec,
return_to_start=return_to_start
)
# 7. 構建任務詳情
tasks_detail = self._build_tasks_detail(
tasks=tasks,
visited_task_ids=visited_task_ids,
chosen_node_per_task=chosen_node_per_task,
task_nodes=task_nodes,
node_meta=node_meta,
locations=locations,
node_prev_next=node_prev_next,
arrival_sec_map=arrival_sec_map,
duration_matrix=duration_matrix,
distance_matrix=distance_matrix,
start_time=start_time,
alt_k=alt_k,
)
skipped_tasks = sorted(set([t.task_id for t in tasks]) - visited_task_ids)
return _TSPTWResult(
status="OK",
total_travel_time_min=int(total_travel_time // 60),
total_travel_distance_m=int(total_travel_distance),
metrics=metrics, # ✅ 這裡把計算好的 metrics 塞進去
route=route,
visited_tasks=sorted(list(visited_task_ids)),
skipped_tasks=skipped_tasks,
tasks_detail=tasks_detail,
)
def _calculate_metrics(
self,
graph: _Graph,
tasks: List[_Task],
visited_task_ids: Set[str],
optimized_dist: float,
optimized_duration: int,
total_service_time: int,
return_to_start: bool
) -> _OptimizationMetrics:
"""
計算優化指標
"""
dist_matrix = graph.distance_matrix
dur_matrix = graph.duration_matrix
node_meta = graph.node_meta
# 1. 建立映射: 哪個 Task 的第 0 個 Candidate 對應哪個 Node Index
task_cand_to_node = {}
for idx, meta in enumerate(node_meta):
if meta["type"] == "poi":
key = (meta["task_idx"], meta["candidate_idx"])
task_cand_to_node[key] = idx
# 2. 模擬 Baseline (笨方法): 照順序跑,每個都選第一個點
baseline_nodes = [0] # Start at Depot
for i, task in enumerate(tasks):
# 總是選第一個候選點 (Candidate 0)
target_node = task_cand_to_node.get((i, 0))
if target_node:
baseline_nodes.append(target_node)
if return_to_start:
baseline_nodes.append(0)
# 3. 計算 Baseline 成本
base_dist = 0
base_travel_time = 0
if len(baseline_nodes) > 1:
for i in range(len(baseline_nodes) - 1):
u = baseline_nodes[i]
v = baseline_nodes[i + 1]
base_dist += dist_matrix[u, v]
base_travel_time += dur_matrix[u, v]
# Baseline 總時間 = 純交通 + 總服務 (假設笨跑法不考慮等待,只算硬成本)
base_total_duration = base_travel_time + total_service_time
# 4. 計算百分比
dist_imp_pct = 0.0
if base_dist > 0:
dist_imp_pct = ((base_dist - optimized_dist) / base_dist) * 100
time_imp_pct = 0.0
if base_total_duration > 0:
time_imp_pct = ((base_total_duration - optimized_duration) / base_total_duration) * 100
efficiency_pct = 0.0
if optimized_duration > 0:
efficiency_pct = (total_service_time / optimized_duration) * 100
total_task_count = len(tasks)
completed_count = len(visited_task_ids)
completion_rate = (completed_count / total_task_count * 100) if total_task_count > 0 else 0.0
return _OptimizationMetrics(
# ✅ 新增完成率資訊
total_tasks=total_task_count,
completed_tasks=completed_count,
completion_rate_pct=round(completion_rate, 1),
original_distance_m=int(base_dist),
optimized_distance_m=int(optimized_dist),
distance_saved_m=int(base_dist - optimized_dist),
distance_improvement_pct=round(dist_imp_pct, 1),
original_duration_min=int(base_total_duration // 60),
optimized_duration_min=int(optimized_duration // 60),
time_saved_min=int((base_total_duration - optimized_duration) // 60),
time_improvement_pct=round(time_imp_pct, 1),
route_efficiency_pct=round(efficiency_pct, 1)
)
def _build_tasks_detail(
self,
tasks: List[_Task],
visited_task_ids: Set[str],
chosen_node_per_task: Dict[str, int],
task_nodes: Dict[str, List[int]],
node_meta: List[Dict[str, Any]],
locations: List[Dict[str, float]],
node_prev_next: Dict[int, Tuple[int, int]],
arrival_sec_map: Dict[int, int],
duration_matrix: np.ndarray,
distance_matrix: np.ndarray,
start_time: datetime,
alt_k: int,
) -> List[_TaskDetail]:
"""
構建任務詳情(保持原本邏輯不變)
"""
tasks_detail: List[_TaskDetail] = []
all_task_ids = [t.task_id for t in tasks]
task_priority_map = {t.task_id: t.priority for t in tasks}
for task_id in all_task_ids:
visited = task_id in visited_task_ids
priority = task_priority_map.get(task_id, "MEDIUM")
chosen_node = chosen_node_per_task.get(task_id, None)
all_nodes_for_task = task_nodes.get(task_id, [])
chosen_poi_info = None
if visited and chosen_node is not None:
meta = node_meta[chosen_node]
loc = locations[chosen_node]
chosen_poi_info = {
"node_index": chosen_node,
"poi_id": meta["poi_id"],
"lat": loc["lat"],
"lng": loc["lng"],
"interval_idx": meta.get("interval_idx"),
}
alternative_pois: List[_AlternativePOI] = []
if visited and chosen_node is not None and len(all_nodes_for_task) > 1:
alternative_pois = self._find_alternative_pois(
chosen_node=chosen_node,
all_nodes_for_task=all_nodes_for_task,
node_meta=node_meta,
locations=locations,
node_prev_next=node_prev_next,
arrival_sec_map=arrival_sec_map,
duration_matrix=duration_matrix,
distance_matrix=distance_matrix,
tasks=tasks,
start_time=start_time,
alt_k=alt_k,
)
tasks_detail.append(
_TaskDetail(
task_id=task_id,
priority=priority,
visited=visited,
chosen_poi=chosen_poi_info,
alternative_pois=alternative_pois,
)
)
return tasks_detail
def _find_alternative_pois(
self,
chosen_node: int,
all_nodes_for_task: List[int],
node_meta: List[Dict[str, Any]],
locations: List[Dict[str, float]],
node_prev_next: Dict[int, Tuple[int, int]],
arrival_sec_map: Dict[int, int],
duration_matrix: np.ndarray,
distance_matrix: np.ndarray,
tasks: List[_Task],
start_time: datetime,
alt_k: int,
) -> List[_AlternativePOI]:
"""
找出 Top-K 備選 POI (保持原本邏輯不變)
"""
prev_node, next_node = node_prev_next[chosen_node]
base_time = duration_matrix[prev_node, chosen_node] + duration_matrix[chosen_node, next_node]
base_dist = distance_matrix[prev_node, chosen_node] + distance_matrix[chosen_node, next_node]
chosen_meta = node_meta[chosen_node]
chosen_poi_id = chosen_meta["poi_id"]
chosen_arr_sec = arrival_sec_map.get(chosen_node, 0)
candidates_alt: List[_AlternativePOI] = []
for cand_node in all_nodes_for_task:
meta_c = node_meta[cand_node]
if cand_node == chosen_node:
continue
if meta_c["poi_id"] == chosen_poi_id:
continue
cand_start_sec, cand_end_sec = self.tw_handler.get_node_time_window_sec(
meta_c, tasks, start_time
)
if not (cand_start_sec <= chosen_arr_sec <= cand_end_sec):
continue
dt = duration_matrix[prev_node, cand_node] + duration_matrix[cand_node, next_node]
dd = distance_matrix[prev_node, cand_node] + distance_matrix[cand_node, next_node]
delta_time_sec = int(dt - base_time)
delta_dist = int(dd - base_dist)
loc_c = locations[cand_node]
candidates_alt.append(
_AlternativePOI(
node_index=cand_node,
poi_id=meta_c["poi_id"],
lat=loc_c["lat"],
lng=loc_c["lng"],
interval_idx=meta_c.get("interval_idx"),
delta_travel_time_min=delta_time_sec // 60,
delta_travel_distance_m=delta_dist,
)
)
candidates_alt.sort(key=lambda x: x.delta_travel_time_min)
return candidates_alt[:alt_k] |