File size: 15,993 Bytes
b7d08cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
"""
結果提取器 - 從 OR-Tools 結果提取路線和任務詳情
"""
from typing import List, Dict, Tuple, Any, Set, Optional
from datetime import datetime, timedelta

import numpy as np
from ortools.constraint_solver import pywrapcp

from src.infra.logger import get_logger

from ..models.internal_models import (
    _Task,
    _Graph,
    _TSPTWResult,
    _RouteStep,
    _TaskDetail,
    _AlternativePOI,
    _OptimizationMetrics,  # ✅ 確保有 import 這個
)
from ..graph.time_window_handler import TimeWindowHandler

logger = get_logger(__name__)


class SolutionExtractor:
    """
    結果提取器

    職責:
    - 從 OR-Tools 結果提取路線
    - 計算總時間/距離
    - 構建任務詳情(包含備選 POI)
    - ✅ 計算快樂表指標 (Metrics)
    """

    def __init__(self):
        self.tw_handler = TimeWindowHandler()

    def extract(
            self,
            routing: pywrapcp.RoutingModel,
            manager: pywrapcp.RoutingIndexManager,
            solution: pywrapcp.Assignment,
            time_dimension: pywrapcp.RoutingDimension,
            start_time: datetime,
            graph: _Graph,
            tasks: List[_Task],
            alt_k: int,
            return_to_start: bool,
    ) -> _TSPTWResult:
        """
        提取完整結果
        """
        duration_matrix = graph.duration_matrix
        distance_matrix = graph.distance_matrix
        node_meta = graph.node_meta
        locations = graph.locations

        route: List[_RouteStep] = []
        visited_task_ids = set()

        total_travel_time = 0
        total_travel_distance = 0

        sequence_nodes: List[int] = []
        sequence_indices: List[int] = []

        # 1. 提取訪問順序
        idx = routing.Start(0)
        while not routing.IsEnd(idx):
            node = manager.IndexToNode(idx)
            sequence_indices.append(idx)
            sequence_nodes.append(node)
            idx = solution.Value(routing.NextVar(idx))

        end_node = manager.IndexToNode(idx)
        sequence_indices.append(idx)
        sequence_nodes.append(end_node)

        # 如果不要顯示回到出發點,就把最後這個 depot 去掉
        if not return_to_start:
            if len(sequence_nodes) >= 2 and node_meta[sequence_nodes[-1]]["type"] == "depot":
                sequence_nodes = sequence_nodes[:-1]
                sequence_indices = sequence_indices[:-1]

        # 2. 構建前後節點映射(用於計算備選 POI)
        node_prev_next: Dict[int, Tuple[int, int]] = {}
        for i, node in enumerate(sequence_nodes):
            prev_node = sequence_nodes[i - 1] if i > 0 else sequence_nodes[0]
            next_node = sequence_nodes[i + 1] if i < len(sequence_nodes) - 1 else sequence_nodes[-1]
            node_prev_next[node] = (prev_node, next_node)

        task_nodes: Dict[str, List[int]] = {}
        chosen_node_per_task: Dict[str, int] = {}
        arrival_sec_map: Dict[int, int] = {}

        task_service_duration_map = {
            i: task.service_duration_min
            for i, task in enumerate(tasks)
        }

        # 3. 提取路線和訪問信息
        for step_idx, (routing_index, node) in enumerate(zip(sequence_indices, sequence_nodes)):
            meta = node_meta[node]
            time_var = time_dimension.CumulVar(routing_index)
            arr_sec = solution.Value(time_var)
            arr_dt = start_time + timedelta(seconds=int(arr_sec))

            arrival_sec_map[node] = arr_sec

            if meta["type"] == "depot":
                step = _RouteStep(
                    step=step_idx,
                    node_index=node,
                    arrival_time=arr_dt.isoformat(),
                    departure_time=arr_dt.isoformat(),
                    type="depot",
                )
            else:
                task_id = meta["task_id"]
                task_idx = meta["task_idx"]
                service_duration_min = task_service_duration_map.get(task_idx, 5)
                service_duration_sec = service_duration_min * 60
                dep_dt = arr_dt + timedelta(seconds=service_duration_sec)

                visited_task_ids.add(task_id)
                task_nodes.setdefault(task_id, [])
                task_nodes[task_id].append(node)

                if task_id not in chosen_node_per_task:
                    chosen_node_per_task[task_id] = node

                step = _RouteStep(
                    step=step_idx,
                    node_index=node,
                    arrival_time=arr_dt.isoformat(),
                    departure_time=dep_dt.isoformat(),
                    type="task_poi",
                    task_id=task_id,
                    poi_id=meta["poi_id"],
                    service_duration_min=service_duration_min,  # 確保回傳服務時間
                )

            route.append(step)

        # 4. 補充未訪問的節點到 task_nodes(用於備選 POI 計算)
        for node in range(1, len(node_meta)):
            meta = node_meta[node]
            if meta["type"] != "poi":
                continue
            task_id = meta["task_id"]
            task_nodes.setdefault(task_id, [])
            if node not in task_nodes[task_id]:
                task_nodes[task_id].append(node)

        # 5. 計算優化後的總距離 (Optimized Distance)
        for i in range(len(sequence_nodes) - 1):
            n1 = sequence_nodes[i]
            n2 = sequence_nodes[i + 1]
            total_travel_distance += distance_matrix[n1, n2]
            total_travel_time += duration_matrix[n1, n2]  # 這是純交通時間

        # 6. 計算快樂表 metrics (Baseline vs Optimized)

        # 6.1 計算總服務時間 (分子)
        total_service_time_sec = sum(
            tasks[node_meta[node]["task_idx"]].service_duration_sec
            for node in sequence_nodes
            if node_meta[node]["type"] == "poi"
        )

        # 6.2 優化後的總耗時 (Total Duration = Finish - Start)
        # 注意: 這是包含 Waiting Time 的總工時
        #last_node_idx = sequence_indices[-1]
        #optimized_total_duration_sec = solution.Value(time_dimension.CumulVar(last_node_idx))
        optimized_pure_duration = total_travel_time + total_service_time_sec

        # 6.3 執行計算
        metrics = self._calculate_metrics(
            graph=graph,
            tasks=tasks,
            visited_task_ids=visited_task_ids,
            optimized_dist=total_travel_distance,
            optimized_duration=optimized_pure_duration,
            total_service_time=total_service_time_sec,
            return_to_start=return_to_start
        )

        # 7. 構建任務詳情
        tasks_detail = self._build_tasks_detail(
            tasks=tasks,
            visited_task_ids=visited_task_ids,
            chosen_node_per_task=chosen_node_per_task,
            task_nodes=task_nodes,
            node_meta=node_meta,
            locations=locations,
            node_prev_next=node_prev_next,
            arrival_sec_map=arrival_sec_map,
            duration_matrix=duration_matrix,
            distance_matrix=distance_matrix,
            start_time=start_time,
            alt_k=alt_k,
        )

        skipped_tasks = sorted(set([t.task_id for t in tasks]) - visited_task_ids)

        return _TSPTWResult(
            status="OK",
            total_travel_time_min=int(total_travel_time // 60),
            total_travel_distance_m=int(total_travel_distance),
            metrics=metrics,  # ✅ 這裡把計算好的 metrics 塞進去
            route=route,
            visited_tasks=sorted(list(visited_task_ids)),
            skipped_tasks=skipped_tasks,
            tasks_detail=tasks_detail,
        )

    def _calculate_metrics(
            self,
            graph: _Graph,
            tasks: List[_Task],
            visited_task_ids: Set[str],
            optimized_dist: float,
            optimized_duration: int,
            total_service_time: int,
            return_to_start: bool
    ) -> _OptimizationMetrics:
        """
        計算優化指標
        """
        dist_matrix = graph.distance_matrix
        dur_matrix = graph.duration_matrix
        node_meta = graph.node_meta

        # 1. 建立映射: 哪個 Task 的第 0 個 Candidate 對應哪個 Node Index
        task_cand_to_node = {}
        for idx, meta in enumerate(node_meta):
            if meta["type"] == "poi":
                key = (meta["task_idx"], meta["candidate_idx"])
                task_cand_to_node[key] = idx

        # 2. 模擬 Baseline (笨方法): 照順序跑,每個都選第一個點
        baseline_nodes = [0]  # Start at Depot
        for i, task in enumerate(tasks):
            # 總是選第一個候選點 (Candidate 0)
            target_node = task_cand_to_node.get((i, 0))
            if target_node:
                baseline_nodes.append(target_node)

        if return_to_start:
            baseline_nodes.append(0)

        # 3. 計算 Baseline 成本
        base_dist = 0
        base_travel_time = 0

        if len(baseline_nodes) > 1:
            for i in range(len(baseline_nodes) - 1):
                u = baseline_nodes[i]
                v = baseline_nodes[i + 1]
                base_dist += dist_matrix[u, v]
                base_travel_time += dur_matrix[u, v]

        # Baseline 總時間 = 純交通 + 總服務 (假設笨跑法不考慮等待,只算硬成本)
        base_total_duration = base_travel_time + total_service_time

        # 4. 計算百分比
        dist_imp_pct = 0.0
        if base_dist > 0:
            dist_imp_pct = ((base_dist - optimized_dist) / base_dist) * 100

        time_imp_pct = 0.0
        if base_total_duration > 0:
            time_imp_pct = ((base_total_duration - optimized_duration) / base_total_duration) * 100

        efficiency_pct = 0.0
        if optimized_duration > 0:
            efficiency_pct = (total_service_time / optimized_duration) * 100

        total_task_count = len(tasks)
        completed_count = len(visited_task_ids)
        completion_rate = (completed_count / total_task_count * 100) if total_task_count > 0 else 0.0

        return _OptimizationMetrics(
            # ✅ 新增完成率資訊
            total_tasks=total_task_count,
            completed_tasks=completed_count,
            completion_rate_pct=round(completion_rate, 1),

            original_distance_m=int(base_dist),
            optimized_distance_m=int(optimized_dist),
            distance_saved_m=int(base_dist - optimized_dist),
            distance_improvement_pct=round(dist_imp_pct, 1),

            original_duration_min=int(base_total_duration // 60),
            optimized_duration_min=int(optimized_duration // 60),
            time_saved_min=int((base_total_duration - optimized_duration) // 60),
            time_improvement_pct=round(time_imp_pct, 1),

            route_efficiency_pct=round(efficiency_pct, 1)
        )

    def _build_tasks_detail(
            self,
            tasks: List[_Task],
            visited_task_ids: Set[str],
            chosen_node_per_task: Dict[str, int],
            task_nodes: Dict[str, List[int]],
            node_meta: List[Dict[str, Any]],
            locations: List[Dict[str, float]],
            node_prev_next: Dict[int, Tuple[int, int]],
            arrival_sec_map: Dict[int, int],
            duration_matrix: np.ndarray,
            distance_matrix: np.ndarray,
            start_time: datetime,
            alt_k: int,
    ) -> List[_TaskDetail]:
        """
        構建任務詳情(保持原本邏輯不變)
        """
        tasks_detail: List[_TaskDetail] = []
        all_task_ids = [t.task_id for t in tasks]
        task_priority_map = {t.task_id: t.priority for t in tasks}

        for task_id in all_task_ids:
            visited = task_id in visited_task_ids
            priority = task_priority_map.get(task_id, "MEDIUM")

            chosen_node = chosen_node_per_task.get(task_id, None)
            all_nodes_for_task = task_nodes.get(task_id, [])

            chosen_poi_info = None
            if visited and chosen_node is not None:
                meta = node_meta[chosen_node]
                loc = locations[chosen_node]
                chosen_poi_info = {
                    "node_index": chosen_node,
                    "poi_id": meta["poi_id"],
                    "lat": loc["lat"],
                    "lng": loc["lng"],
                    "interval_idx": meta.get("interval_idx"),
                }

            alternative_pois: List[_AlternativePOI] = []

            if visited and chosen_node is not None and len(all_nodes_for_task) > 1:
                alternative_pois = self._find_alternative_pois(
                    chosen_node=chosen_node,
                    all_nodes_for_task=all_nodes_for_task,
                    node_meta=node_meta,
                    locations=locations,
                    node_prev_next=node_prev_next,
                    arrival_sec_map=arrival_sec_map,
                    duration_matrix=duration_matrix,
                    distance_matrix=distance_matrix,
                    tasks=tasks,
                    start_time=start_time,
                    alt_k=alt_k,
                )

            tasks_detail.append(
                _TaskDetail(
                    task_id=task_id,
                    priority=priority,
                    visited=visited,
                    chosen_poi=chosen_poi_info,
                    alternative_pois=alternative_pois,
                )
            )

        return tasks_detail

    def _find_alternative_pois(
            self,
            chosen_node: int,
            all_nodes_for_task: List[int],
            node_meta: List[Dict[str, Any]],
            locations: List[Dict[str, float]],
            node_prev_next: Dict[int, Tuple[int, int]],
            arrival_sec_map: Dict[int, int],
            duration_matrix: np.ndarray,
            distance_matrix: np.ndarray,
            tasks: List[_Task],
            start_time: datetime,
            alt_k: int,
    ) -> List[_AlternativePOI]:
        """
        找出 Top-K 備選 POI (保持原本邏輯不變)
        """
        prev_node, next_node = node_prev_next[chosen_node]
        base_time = duration_matrix[prev_node, chosen_node] + duration_matrix[chosen_node, next_node]
        base_dist = distance_matrix[prev_node, chosen_node] + distance_matrix[chosen_node, next_node]

        chosen_meta = node_meta[chosen_node]
        chosen_poi_id = chosen_meta["poi_id"]
        chosen_arr_sec = arrival_sec_map.get(chosen_node, 0)

        candidates_alt: List[_AlternativePOI] = []

        for cand_node in all_nodes_for_task:
            meta_c = node_meta[cand_node]

            if cand_node == chosen_node:
                continue

            if meta_c["poi_id"] == chosen_poi_id:
                continue

            cand_start_sec, cand_end_sec = self.tw_handler.get_node_time_window_sec(
                meta_c, tasks, start_time
            )

            if not (cand_start_sec <= chosen_arr_sec <= cand_end_sec):
                continue

            dt = duration_matrix[prev_node, cand_node] + duration_matrix[cand_node, next_node]
            dd = distance_matrix[prev_node, cand_node] + distance_matrix[cand_node, next_node]

            delta_time_sec = int(dt - base_time)
            delta_dist = int(dd - base_dist)

            loc_c = locations[cand_node]

            candidates_alt.append(
                _AlternativePOI(
                    node_index=cand_node,
                    poi_id=meta_c["poi_id"],
                    lat=loc_c["lat"],
                    lng=loc_c["lng"],
                    interval_idx=meta_c.get("interval_idx"),
                    delta_travel_time_min=delta_time_sec // 60,
                    delta_travel_distance_m=delta_dist,
                )
            )

        candidates_alt.sort(key=lambda x: x.delta_travel_time_min)
        return candidates_alt[:alt_k]