Spaces:
Running
Running
File size: 22,016 Bytes
fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c a328f28 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c a328f28 4abc17c a328f28 4abc17c a328f28 fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c a328f28 4abc17c a328f28 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b a328f28 4abc17c a328f28 fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c a328f28 fbcd46b 4abc17c a328f28 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c a328f28 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b 4abc17c fbcd46b a328f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
"""
LifeFlow AI - Main Application v3.1
"""
import sys
from pathlib import Path
import gradio as gr
from datetime import datetime
import time as time_module
# 導入配置
from config import DEFAULT_SETTINGS, APP_TITLE
# 導入 UI 組件
from ui.theme import get_enhanced_css
from ui.components.header import create_header, create_top_controls
from ui.components.input_form import create_input_form, toggle_location_inputs
from ui.components.confirmation import create_confirmation_area, create_exit_button
from ui.components.results import create_team_area, create_result_area, create_tabs
from ui.components.modals import create_settings_modal, create_doc_modal
# 導入核心工具
from core.utils import (
create_agent_stream_output, create_agent_card_enhanced,
create_task_card, create_summary_card, create_animated_map,
get_reasoning_html_reversed, create_celebration_animation,
create_result_visualization
)
class LifeFlowAI:
"""LifeFlow AI - v3.1 主類"""
def __init__(self):
self.settings = DEFAULT_SETTINGS.copy()
self.task_list = []
self.reasoning_messages = []
self.planning_completed = False
self.chat_history = []
def step1_analyze_tasks(self, user_input, auto_location, lat, lon):
"""
Step 1: 分析任務 - 帶串流輸出
完成後進入 Step 2 (Confirmation)
"""
if not user_input.strip():
return self._empty_step1_outputs()
# 🔧 串流輸出 1: 開始分析
stream_str = "🤔 Analyzing your request..."
stream_html = self._create_stream_html(stream_str)
yield (
stream_html, "", "", get_reasoning_html_reversed(),
gr.update(visible=False), gr.update(visible=False),
"", # chat_history_output
"Starting analysis...",
*[create_agent_card_enhanced("planner", "working", "Analyzing..."),
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["scout", "optimizer", "validator", "weather", "traffic"]]]
)
time_module.sleep(0.5)
stream_str += "\n📋 Extracting tasks from your input..."
# 🔧 串流輸出 2: 提取任務
stream_html = self._create_stream_html(stream_str)
yield (
stream_html, "", "", get_reasoning_html_reversed(),
gr.update(visible=False), gr.update(visible=False),
"", # chat_history_output
"Extracting tasks...",
*[create_agent_card_enhanced("planner", "working", "Extracting tasks..."),
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["scout", "optimizer", "validator", "weather", "traffic"]]]
)
time_module.sleep(0.5)
# 模擬提取的任務
self.task_list = [
{"id": 1, "title": "Visit hospital", "priority": "HIGH",
"time": "08:00-12:00", "duration": "45 minutes", "location": "Hospital nearby", "icon": "🏥"},
{"id": 2, "title": "Buy groceries", "priority": "MEDIUM",
"time": "Anytime", "duration": "30 minutes", "location": "Supermarket", "icon": "🛒"},
{"id": 3, "title": "Mail package", "priority": "HIGH",
"time": "Before 15:00", "duration": "20 minutes", "location": "Post office", "icon": "📮"}
]
# 添加推理訊息
self._add_reasoning("planner", "Analyzing input tasks...")
self._add_reasoning("planner", f"Extracted {len(self.task_list)} tasks")
# 生成摘要和任務卡片
high_priority = sum(1 for t in self.task_list if t["priority"] == "HIGH")
total_time = sum(int(t["duration"].split()[0]) for t in self.task_list)
summary_html = create_summary_card(len(self.task_list), high_priority, total_time)
task_list_html = self._generate_task_list_html()
stream_str += "\n✅ Analysis complete! Please review your tasks."
stream_html = self._create_stream_html(stream_str)
# Step 1 完成,準備進入 Step 2
yield (
stream_html, summary_html, task_list_html,
get_reasoning_html_reversed(self.reasoning_messages),
gr.update(visible=True), # task_confirm_area
gr.update(visible=False), # chat_input_area (先隱藏)
self._generate_chat_welcome_html(), # chat_history_output
"Tasks extracted successfully ✓",
*[create_agent_card_enhanced("planner", "complete", "Tasks extracted"),
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["scout", "optimizer", "validator", "weather", "traffic"]]]
)
def modify_task_chat(self, user_message):
"""
處理用戶在 Chat with LifeFlow Tab 中的修改請求
這在 Step 2 時可用
"""
if not user_message.strip():
return self._generate_chat_history_html(), self._generate_task_list_html()
# 添加用戶消息
self.chat_history.append({
"role": "user",
"message": user_message,
"time": datetime.now().strftime("%H:%M:%S")
})
# 模擬 AI 回應
time_module.sleep(0.3)
ai_response = f"✅ I've updated your tasks based on your request: '{user_message}'"
self.chat_history.append({
"role": "assistant",
"message": ai_response,
"time": datetime.now().strftime("%H:%M:%S")
})
# 更新 reasoning
self._add_reasoning("planner", f"User requested: {user_message}")
# 返回更新的聊天歷史和任務列表
return self._generate_chat_history_html(), self._generate_task_list_html()
def step2_search_pois(self):
"""
Step 2.5: 搜索 POI - 專家團隊開始工作
Scout Agent 開始工作
"""
time_module.sleep(1)
self._add_reasoning("scout", "Searching for POIs...")
self._add_reasoning("scout", "Found hospital: NTU Hospital (800m, 4.8★)")
self._add_reasoning("scout", "Found supermarket: PX Mart (1.2km)")
reasoning_html = get_reasoning_html_reversed(self.reasoning_messages)
agent_updates = [
create_agent_card_enhanced("planner", "complete", "Tasks ready"),
create_agent_card_enhanced("scout", "working", "Searching POIs..."),
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["optimizer", "validator", "weather", "traffic"]]
]
return reasoning_html, "🗺️ Searching for locations...", *agent_updates
def step3_optimize_route(self):
"""Step 3: 優化路線 - Optimizer 開始工作"""
time_module.sleep(1)
self._add_reasoning("optimizer", "Running TSPTW solver...")
self._add_reasoning("optimizer", "Optimized route: Hospital → Supermarket → Post Office")
report = """
## 🎯 Optimization Complete
### Route Details:
1. **🏥 Hospital** (09:00 - 10:00)
2. **🛒 Supermarket** (10:15 - 10:45)
3. **📮 Post Office** (11:05 - 11:25)
### Metrics:
- ✅ Total distance: 2.8 km
- ✅ Total time: 95 minutes
- ✅ All deadlines met
- ✅ Minimal travel distance
- ✅ Weather conditions favorable
"""
agent_updates = [
create_agent_card_enhanced("planner", "complete", "Analysis done"),
create_agent_card_enhanced("scout", "complete", "POI search done"),
create_agent_card_enhanced("optimizer", "working", "Optimizing route..."),
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["validator", "weather", "traffic"]]
]
reasoning_html = get_reasoning_html_reversed(self.reasoning_messages)
return reasoning_html, report, "🎯 Optimizing route...", *agent_updates
def step4_finalize(self):
"""Step 4: 完成並生成報告(含慶祝動畫和增強視覺化)"""
time_module.sleep(1)
self._add_reasoning("validator", "Validating route quality...")
self._add_reasoning("weather", "Checking weather conditions...")
self._add_reasoning("traffic", "Analyzing traffic patterns...")
self.planning_completed = True
# 生成慶祝動畫
celebration_html = create_celebration_animation()
# 生成詳細的結果視覺化
result_html = create_result_visualization(self.task_list) + celebration_html
# 簡化的 timeline 和 metrics(保留兼容性,但現在主要信息在 result_html 中)
timeline_html = "<h3>🗓️ Detailed Timeline</h3><p>See the complete timeline in the result panel</p>"
metrics_html = "<h3>📈 Performance Metrics</h3><p>All optimization metrics are displayed above</p>"
map_fig = create_animated_map()
agent_updates = [
create_agent_card_enhanced(k, "complete", "Task complete")
for k in ["planner", "scout", "optimizer", "validator", "weather", "traffic"]
]
return (
timeline_html, metrics_html, result_html, map_fig,
gr.update(visible=True), # map_tab
gr.update(visible=False), # team_area (隱藏,任務完成)
"🎉 Planning complete! Review your optimized route.",
*agent_updates
)
def save_settings(self, google_key, weather_key, anthropic_key, model):
"""保存設定"""
self.settings['google_maps_api_key'] = google_key
self.settings['openweather_api_key'] = weather_key
self.settings['anthropic_api_key'] = anthropic_key
self.settings['model'] = model
return "✅ Settings saved successfully!"
def _create_stream_html(self, message):
"""創建串流輸出 HTML"""
return f"""
<div class="stream-container">
<div class="stream-text">{message}<span class="stream-cursor"></span></div>
</div>
"""
def _add_reasoning(self, agent, message):
"""添加推理訊息"""
self.reasoning_messages.append({
'agent': agent,
'message': message,
'time': datetime.now().strftime("%H:%M:%S")
})
def _generate_task_list_html(self):
"""生成任務列表 HTML"""
html = ""
for task in self.task_list:
html += create_task_card(
task["id"], task["title"], task["priority"],
task["time"], task["duration"], task["location"], task["icon"]
)
return html
def _generate_chat_welcome_html(self):
"""生成 Chat 歡迎訊息"""
return """
<div style="padding: 20px; text-align: center;">
<h3 style="color: #4A90E2; margin-bottom: 10px;">💬 Chat with LifeFlow</h3>
<p style="opacity: 0.8;">You can now modify your tasks by chatting with me!</p>
<p style="opacity: 0.6; font-size: 0.9em;">Try: "Change task 2 to high priority" or "Add a new task"</p>
</div>
"""
def _generate_chat_history_html(self):
"""生成聊天歷史 HTML"""
if not self.chat_history:
return self._generate_chat_welcome_html()
html = '<div class="chat-history-container" style="max-height: 400px; overflow-y: auto;">'
for msg in self.chat_history:
role = msg["role"]
message = msg["message"]
time = msg["time"]
if role == "user":
html += f'''
<div style="margin-bottom: 15px; text-align: right;">
<div style="display: inline-block; max-width: 70%; background: #E3F2FD; padding: 10px 15px; border-radius: 15px 15px 0 15px;">
<div style="font-size: 0.9em; font-weight: 500;">{message}</div>
<div style="font-size: 0.75em; opacity: 0.6; margin-top: 5px;">{time}</div>
</div>
</div>
'''
else:
html += f'''
<div style="margin-bottom: 15px; text-align: left;">
<div style="display: inline-block; max-width: 70%; background: #F5F5F5; padding: 10px 15px; border-radius: 15px 15px 15px 0;">
<div style="font-size: 0.85em; color: #4A90E2; font-weight: 600; margin-bottom: 5px;">🤖 LifeFlow AI</div>
<div style="font-size: 0.9em;">{message}</div>
<div style="font-size: 0.75em; opacity: 0.6; margin-top: 5px;">{time}</div>
</div>
</div>
'''
html += '</div>'
return html
def _empty_step1_outputs(self):
"""返回空的 Step 1 輸出"""
return (
create_agent_stream_output(),
"", "", get_reasoning_html_reversed(),
gr.update(visible=False),
gr.update(visible=False),
self._generate_chat_welcome_html(),
"Please enter your tasks",
*[create_agent_card_enhanced(k, "idle", "On standby")
for k in ["planner", "scout", "optimizer", "validator", "weather", "traffic"]]
)
def build_interface(self):
"""構建 Gradio 界面"""
with gr.Blocks(title=APP_TITLE) as demo:
# 注入 CSS 樣式
gr.HTML(get_enhanced_css())
# Header
create_header()
# Top Controls (Theme, Settings & Doc)
theme_btn, settings_btn, doc_btn = create_top_controls()
# Main Layout
with gr.Row():
# ========== Left Column (主操作區) ==========
with gr.Column(scale=2, min_width=400):
# Step 1: Input Form
(input_area, agent_stream_output, user_input, auto_location,
location_inputs, lat_input, lon_input, analyze_btn) = create_input_form(
create_agent_stream_output()
)
# Step 2: Confirmation Area (包含 Exit 和 Ready to plan 按鈕)
(task_confirm_area, task_summary_display,
task_list_display, exit_btn_inline, ready_plan_btn) = create_confirmation_area()
# Step 2.5/3: Team Area (取代 Confirmation Area)
team_area, agent_displays = create_team_area(create_agent_card_enhanced)
# Step 3: Result Area (最終結果展示)
(result_area, result_display,
timeline_display, metrics_display) = create_result_area(create_animated_map)
# ========== Right Column (狀態 + Tabs) ==========
with gr.Column(scale=3, min_width=500):
status_bar = gr.Textbox(
label="📊 Status",
value="Waiting for input...",
interactive=False,
max_lines=1
)
# Tabs (包含新的 Chat with LifeFlow Tab)
(tabs, report_tab, map_tab, report_output, map_output, reasoning_output,
chat_input_area, chat_history_output, chat_input, chat_send) = create_tabs(
create_animated_map,
get_reasoning_html_reversed()
)
# Modals
(settings_modal, google_maps_key, openweather_key, anthropic_key,
model_choice, close_settings_btn, save_settings_btn,
settings_status) = create_settings_modal()
doc_modal, close_doc_btn = create_doc_modal()
# ============= Event Handlers =============
# Auto location toggle
auto_location.change(
fn=toggle_location_inputs,
inputs=[auto_location],
outputs=[location_inputs]
)
# ====== Step 1: Analyze button ======
analyze_btn.click(
fn=self.step1_analyze_tasks,
inputs=[user_input, auto_location, lat_input, lon_input],
outputs=[
agent_stream_output, task_summary_display, task_list_display,
reasoning_output, task_confirm_area, chat_input_area,
chat_history_output, status_bar, *agent_displays
]
).then(
# Step 1 → Step 2: 隱藏輸入區,顯示確認區 + 開啟 Chat 輸入框
fn=lambda: (
gr.update(visible=False), # input_area
gr.update(visible=True), # task_confirm_area
gr.update(visible=True) # chat_input_area (開啟聊天功能)
),
outputs=[input_area, task_confirm_area, chat_input_area]
)
# ====== Step 2: Chat with LifeFlow (任務修改) ======
chat_send.click(
fn=self.modify_task_chat,
inputs=[chat_input],
outputs=[chat_history_output, task_list_display]
).then(
fn=lambda: "", # 清空輸入框
outputs=[chat_input]
)
# ====== Step 2: Exit button ======
exit_btn_inline.click(
fn=lambda: (
gr.update(visible=True), # input_area
gr.update(visible=False), # task_confirm_area
gr.update(visible=False), # chat_input_area (關閉聊天)
gr.update(visible=False), # result_area
gr.update(visible=False), # team_area
gr.update(visible=False), # report_tab
gr.update(visible=False), # map_tab
"", # user_input
create_agent_stream_output(), # agent_stream_output
self._generate_chat_welcome_html(), # chat_history_output (重置)
"Ready to start planning..." # status_bar
),
outputs=[
input_area, task_confirm_area, chat_input_area, result_area,
team_area, report_tab, map_tab, user_input,
agent_stream_output, chat_history_output, status_bar
]
)
# ====== Step 2 → Step 2.5: Ready to Plan button ======
ready_plan_btn.click(
# 隱藏確認區和聊天輸入,顯示專家團隊,切換到 AI Conversation Tab
fn=lambda: (
gr.update(visible=False), # task_confirm_area
gr.update(visible=False), # chat_input_area (關閉聊天輸入)
gr.update(visible=True), # team_area (顯示專家團隊)
gr.update(selected="ai_conversation_tab") # 切換到 AI Conversation Tab
),
outputs=[task_confirm_area, chat_input_area, team_area, tabs]
).then(
# Step 2.5: Scout 開始工作
fn=self.step2_search_pois,
outputs=[reasoning_output, status_bar, *agent_displays]
).then(
# Step 3: Optimizer 開始工作,切換到 Full Report Tab
fn=self.step3_optimize_route,
outputs=[reasoning_output, report_output, status_bar, *agent_displays]
).then(
# 顯示 Report 和 Map Tabs,並切換到 Full Report
fn=lambda: (
gr.update(visible=True), # report_tab
gr.update(visible=True), # map_tab
gr.update(selected="report_tab") # 切換到 Full Report Tab
),
outputs=[report_tab, map_tab, tabs]
).then(
# Step 4: 完成規劃
fn=self.step4_finalize,
outputs=[
timeline_display, metrics_display, result_display,
map_output, map_tab, team_area, status_bar, *agent_displays
]
).then(
fn=lambda: gr.update(visible=True),
outputs=[result_area]
)
# ====== Settings ======
settings_btn.click(
fn=lambda: gr.update(visible=True),
outputs=[settings_modal]
)
close_settings_btn.click(
fn=lambda: gr.update(visible=False),
outputs=[settings_modal]
)
save_settings_btn.click(
fn=self.save_settings,
inputs=[google_maps_key, openweather_key, anthropic_key, model_choice],
outputs=[settings_status]
)
# ====== Theme Toggle ======
theme_btn.click(
fn=None,
js="""
() => {
const container = document.querySelector('.gradio-container');
if (container) {
container.classList.toggle('theme-dark');
const isDark = container.classList.contains('theme-dark');
localStorage.setItem('lifeflow-theme', isDark ? 'dark' : 'light');
console.log('Theme toggled:', isDark ? 'dark' : 'light');
}
}
"""
)
# ====== Documentation ======
doc_btn.click(
fn=lambda: gr.update(visible=True),
outputs=[doc_modal]
)
close_doc_btn.click(
fn=lambda: gr.update(visible=False),
outputs=[doc_modal]
)
return demo
def main():
app = LifeFlowAI()
demo = app.build_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True)
if __name__ == "__main__":
main() |