LifeFlow-AI / src /optimization /tsptw_solver.py
Marco310's picture
Release v1.0.0: Hybrid AI Architecture, Modern UI Overhaul, and Performance Optimizations
1a2b0fa
raw
history blame
10.6 kB
import os
from typing import List, Dict, Any, Optional
from datetime import datetime
from src.infra.logger import get_logger
from src.services.googlemap_api_service import GoogleMapAPIService
from src.optimization.models import (
convert_tasks_to_internal,
convert_location_to_internal,
convert_result_to_dict,
)
from src.optimization.graph import GraphBuilder
from src.optimization.solver import ORToolsSolver, SolutionExtractor
logger = get_logger(__name__)
class TSPTWSolver:
"""
TSPTW (Traveling Salesman Problem with Time Windows) 求解器
✅ 完全保留原始功能:
- 外部 API 使用 Dict (向後兼容)
- 內部使用 Pydantic (類型檢查 + 驗證)
- 時間單位使用分鐘(service_duration_min)
- 時間窗同時支援 Task-level & POI-level (含多段 time_windows)
- 備選 POI 會考慮 time window 且不再推薦同一個 poi_id
✨ 重構改進:
- 模塊化架構(易於測試和維護)
- 清晰的職責分離
- 保持對外 API 完全不變
"""
def __init__(
self,
time_limit_seconds: Optional[int] = None,
verbose: bool = False,
):
"""
初始化求解器
Args:
api_key: Google Maps API Key
time_limit_seconds: 求解時間限制(秒)
verbose: 是否顯示詳細日誌
"""
env_limit = (
os.getenv("SOLVER_TIME_LIMIT")
or os.getenv("solver_time_limit")
or "1"
)
self.time_limit_seconds = (
time_limit_seconds if time_limit_seconds is not None else int(env_limit)
)
self.verbose = verbose
# 初始化各模塊
self.graph_builder = GraphBuilder()
self.ortools_solver = ORToolsSolver(
time_limit_seconds=self.time_limit_seconds,
verbose=verbose,
)
self.solution_extractor = SolutionExtractor()
# ------------------------------------------------------------------ #
# Public API - 完全保留原始接口 #
# ------------------------------------------------------------------ #
def solve(
self,
start_location: Dict[str, float],
start_time: datetime,
deadline: datetime,
tasks: List[Dict[str, Any]] = None,
travel_mode="DRIVE",
max_wait_time_min: int = 10,
alt_k: int = 3,
return_to_start: bool = True,
) -> Dict[str, Any]:
"""
求解 TSPTW
✅ 完全保留原始 API 和功能
Args:
tasks: 任務列表,每個任務格式:
{
"task_id": str,
"priority": "HIGH" | "MEDIUM" | "LOW",
"time_window": (datetime, datetime) | None,
"service_duration_min": int,
"candidates": [
{
"poi_id": str,
"lat": float,
"lng": float,
"time_window": (datetime, datetime) | None,
"time_windows": [(datetime, datetime), ...] | None
}
]
}
start_location: {"lat": float, "lng": float}
start_time: 開始時間
deadline: 截止時間
max_wait_time_min: 最大等待時間(分鐘)
travel_mode: 矩陣計算的交通模式
alt_k: 回傳 Top-K 備選 POI
return_to_start: 是否回到出發點
Returns: Dict(由 _TSPTWResult 轉出)
{
"status": "OK" | "NO_SOLUTION" | "NO_TASKS",
"total_travel_time_min": int,
"total_travel_distance_m": int,
"route": [...],
"visited_tasks": [...],
"skipped_tasks": [...],
"tasks_detail": [...]
}
"""
logger.info("TSPTWSolver.solve() start, tasks=%d", len(tasks))
# 1. 驗證和轉換輸入
try:
internal_tasks = convert_tasks_to_internal(tasks)
internal_start_location = convert_location_to_internal(start_location)
except Exception as e:
logger.error(f"Failed to validate input: {e}")
return {
"status": "INVALID_INPUT",
"error": str(e),
"total_travel_time_min": 0,
"total_travel_distance_m": 0,
"route": [],
"visited_tasks": [],
"skipped_tasks": [t.get("task_id", "") for t in tasks],
"tasks_detail": [],
}
# 2. 構建圖
graph = self.graph_builder.build_graph(
start_location=internal_start_location,
tasks=internal_tasks,
travel_mode=travel_mode,
)
num_nodes = len(graph.node_meta)
if num_nodes <= 1:
logger.warning("No POIs to visit, only depot.")
return {
"status": "NO_TASKS",
"total_travel_time_min": 0,
"total_travel_distance_m": 0,
"route": [],
"visited_tasks": [],
"skipped_tasks": [t.task_id for t in internal_tasks],
"tasks_detail": [],
}
# 3. 求解
max_wait_time_sec = max_wait_time_min * 60
try:
routing, manager, solution = self.ortools_solver.solve(
graph=graph,
tasks=internal_tasks,
start_time=start_time,
deadline=deadline,
max_wait_time_sec=max_wait_time_sec,
)
except Exception as e:
logger.error(f"OR-Tools solver failed: {e}")
return {
"status": "SOLVER_ERROR",
"error": str(e),
"total_travel_time_min": 0,
"total_travel_distance_m": 0,
"route": [],
"visited_tasks": [],
"skipped_tasks": [t.task_id for t in internal_tasks],
"tasks_detail": [],
}
# 4. 檢查是否有解
if solution is None:
logger.warning("No solution found")
return {
"status": "NO_SOLUTION",
"total_travel_time_min": 0,
"total_travel_distance_m": 0,
"route": [],
"visited_tasks": [],
"skipped_tasks": [t.task_id for t in internal_tasks],
"tasks_detail": [],
}
# 5. 提取結果
time_dimension = routing.GetDimensionOrDie("Time")
result = self.solution_extractor.extract(
routing=routing,
manager=manager,
solution=solution,
time_dimension=time_dimension,
start_time=start_time,
graph=graph,
tasks=internal_tasks,
alt_k=alt_k,
return_to_start=return_to_start,
)
logger.info("TSPTWSolver.solve() done, status=%s", result.status)
# 6. 轉換為外部 Dict
return convert_result_to_dict(result)
def test_time_window_handler():
from datetime import datetime, timezone, timedelta
from src.optimization.graph.time_window_handler import TimeWindowHandler
handler = TimeWindowHandler()
tz = timezone(timedelta(hours=8)) # UTC+8
start_time = datetime(2025, 11, 22, 10, 0, 0, tzinfo=tz)
horizon_sec = 8 * 3600 # 8 hours
print("=== Test Case 1: 都沒有時間窗口 ===")
start, end = handler.compute_effective_time_window(None, None, start_time, horizon_sec)
assert start == 0 and end == horizon_sec
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 2: Dict 格式 - 只有 task 有時間窗口 ===")
task_tw = {
'earliest_time': datetime(2025, 11, 22, 11, 0, 0, tzinfo=tz),
'latest_time': datetime(2025, 11, 22, 15, 0, 0, tzinfo=tz)
}
start, end = handler.compute_effective_time_window(task_tw, None, start_time, horizon_sec)
assert start == 3600 # 1 hour after start
assert end == 18000 # 5 hours after start
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 3: Tuple 格式 - 只有 POI 有時間窗口 ===")
poi_tw = (
datetime(2025, 11, 22, 9, 0, 0, tzinfo=tz), # 開放時間
datetime(2025, 11, 22, 17, 0, 0, tzinfo=tz) # 關門時間
)
start, end = handler.compute_effective_time_window(None, poi_tw, start_time, horizon_sec)
assert start == 0 # POI 已經開門
assert end == 25200 # 7 hours after start
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 4: 字符串格式 ===")
task_tw_str = {
'earliest_time': '2025-11-22T11:00:00+08:00',
'latest_time': '2025-11-22T15:00:00+08:00'
}
start, end = handler.compute_effective_time_window(task_tw_str, None, start_time, horizon_sec)
assert start == 3600
assert end == 18000
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 5: 部分時間窗口 (只有 earliest) ===")
partial_tw = {
'earliest_time': datetime(2025, 11, 22, 12, 0, 0, tzinfo=tz),
'latest_time': None
}
start, end = handler.compute_effective_time_window(partial_tw, None, start_time, horizon_sec)
assert start == 7200 # 2 hours after start
assert end == horizon_sec
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 6: 部分時間窗口 (只有 latest) ===")
partial_tw = {
'earliest_time': None,
'latest_time': datetime(2025, 11, 22, 16, 0, 0, tzinfo=tz)
}
start, end = handler.compute_effective_time_window(partial_tw, None, start_time, horizon_sec)
assert start == 0
assert end == 21600 # 6 hours after start
print(f"✅ Pass: [{start}, {end}]")
print("\n=== Test Case 7: 實際場景 - Scout 返回的 POI time_window = None ===")
poi_data = {
'place_id': 'ChIJ...',
'name': 'Rainbow Village',
'time_window': None # 你的實際情況
}
start, end = handler.compute_effective_time_window(task_tw, poi_data.get('time_window'), start_time, horizon_sec)
assert start == 3600 and end == 18000
print(f"✅ Pass: [{start}, {end}]")
print("\n🎉 All tests passed!")
if __name__ == "__main__":
test_time_window_handler()