Spaces:
Running
Running
File size: 18,808 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
"""
Title: Graph representation learning with node2vec
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/05/15
Last modified: 2021/05/15
Description: Implementing the node2vec model to generate embeddings for movies from the MovieLens dataset.
Accelerator: GPU
"""
"""
## Introduction
Learning useful representations from objects structured as graphs is useful for
a variety of machine learning (ML) applications—such as social and communication networks analysis,
biomedicine studies, and recommendation systems.
[Graph representation Learning](https://www.cs.mcgill.ca/~wlh/grl_book/) aims to
learn embeddings for the graph nodes, which can be used for a variety of ML tasks
such as node label prediction (e.g. categorizing an article based on its citations)
and link prediction (e.g. recommending an interest group to a user in a social network).
[node2vec](https://arxiv.org/abs/1607.00653) is a simple, yet scalable and effective
technique for learning low-dimensional embeddings for nodes in a graph by optimizing
a neighborhood-preserving objective. The aim is to learn similar embeddings for
neighboring nodes, with respect to the graph structure.
Given your data items structured as a graph (where the items are represented as
nodes and the relationship between items are represented as edges),
node2vec works as follows:
1. Generate item sequences using (biased) random walk.
2. Create positive and negative training examples from these sequences.
3. Train a [word2vec](https://www.tensorflow.org/tutorials/text/word2vec) model
(skip-gram) to learn embeddings for the items.
In this example, we demonstrate the node2vec technique on the
[small version of the Movielens dataset](https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html)
to learn movie embeddings. Such a dataset can be represented as a graph by treating
the movies as nodes, and creating edges between movies that have similar ratings
by the users. The learnt movie embeddings can be used for tasks such as movie recommendation,
or movie genres prediction.
This example requires `networkx` package, which can be installed using the following command:
```shell
pip install networkx
```
"""
"""
## Setup
"""
import os
from collections import defaultdict
import math
import networkx as nx
import random
from tqdm import tqdm
from zipfile import ZipFile
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
"""
## Download the MovieLens dataset and prepare the data
The small version of the MovieLens dataset includes around 100k ratings
from 610 users on 9,742 movies.
First, let's download the dataset. The downloaded folder will contain
three data files: `users.csv`, `movies.csv`, and `ratings.csv`. In this example,
we will only need the `movies.dat`, and `ratings.dat` data files.
"""
urlretrieve(
"http://files.grouplens.org/datasets/movielens/ml-latest-small.zip", "movielens.zip"
)
ZipFile("movielens.zip", "r").extractall()
"""
Then, we load the data into a Pandas DataFrame and perform some basic preprocessing.
"""
# Load movies to a DataFrame.
movies = pd.read_csv("ml-latest-small/movies.csv")
# Create a `movieId` string.
movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}")
# Load ratings to a DataFrame.
ratings = pd.read_csv("ml-latest-small/ratings.csv")
# Convert the `ratings` to floating point
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))
# Create the `movie_id` string.
ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}")
print("Movies data shape:", movies.shape)
print("Ratings data shape:", ratings.shape)
"""
Let's inspect a sample instance of the `ratings` DataFrame.
"""
ratings.head()
"""
Next, let's check a sample instance of the `movies` DataFrame.
"""
movies.head()
"""
Implement two utility functions for the `movies` DataFrame.
"""
def get_movie_title_by_id(movieId):
return list(movies[movies.movieId == movieId].title)[0]
def get_movie_id_by_title(title):
return list(movies[movies.title == title].movieId)[0]
"""
## Construct the Movies graph
We create an edge between two movie nodes in the graph if both movies are rated
by the same user >= `min_rating`. The weight of the edge will be based on the
[pointwise mutual information](https://en.wikipedia.org/wiki/Pointwise_mutual_information)
between the two movies, which is computed as: `log(xy) - log(x) - log(y) + log(D)`, where:
* `xy` is how many users rated both movie `x` and movie `y` with >= `min_rating`.
* `x` is how many users rated movie `x` >= `min_rating`.
* `y` is how many users rated movie `y` >= `min_rating`.
* `D` total number of movie ratings >= `min_rating`.
"""
"""
### Step 1: create the weighted edges between movies.
"""
min_rating = 5
pair_frequency = defaultdict(int)
item_frequency = defaultdict(int)
# Filter instances where rating is greater than or equal to min_rating.
rated_movies = ratings[ratings.rating >= min_rating]
# Group instances by user.
movies_grouped_by_users = list(rated_movies.groupby("userId"))
for group in tqdm(
movies_grouped_by_users,
position=0,
leave=True,
desc="Compute movie rating frequencies",
):
# Get a list of movies rated by the user.
current_movies = list(group[1]["movieId"])
for i in range(len(current_movies)):
item_frequency[current_movies[i]] += 1
for j in range(i + 1, len(current_movies)):
x = min(current_movies[i], current_movies[j])
y = max(current_movies[i], current_movies[j])
pair_frequency[(x, y)] += 1
"""
### Step 2: create the graph with the nodes and the edges
To reduce the number of edges between nodes, we only add an edge between movies
if the weight of the edge is greater than `min_weight`.
"""
min_weight = 10
D = math.log(sum(item_frequency.values()))
# Create the movies undirected graph.
movies_graph = nx.Graph()
# Add weighted edges between movies.
# This automatically adds the movie nodes to the graph.
for pair in tqdm(
pair_frequency, position=0, leave=True, desc="Creating the movie graph"
):
x, y = pair
xy_frequency = pair_frequency[pair]
x_frequency = item_frequency[x]
y_frequency = item_frequency[y]
pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D
weight = pmi * xy_frequency
# Only include edges with weight >= min_weight.
if weight >= min_weight:
movies_graph.add_edge(x, y, weight=weight)
"""
Let's display the total number of nodes and edges in the graph.
Note that the number of nodes is less than the total number of movies,
since only the movies that have edges to other movies are added.
"""
print("Total number of graph nodes:", movies_graph.number_of_nodes())
print("Total number of graph edges:", movies_graph.number_of_edges())
"""
Let's display the average node degree (number of neighbours) in the graph.
"""
degrees = []
for node in movies_graph.nodes:
degrees.append(movies_graph.degree[node])
print("Average node degree:", round(sum(degrees) / len(degrees), 2))
"""
### Step 3: Create vocabulary and a mapping from tokens to integer indices
The vocabulary is the nodes (movie IDs) in the graph.
"""
vocabulary = ["NA"] + list(movies_graph.nodes)
vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}
"""
## Implement the biased random walk
A random walk starts from a given node, and randomly picks a neighbour node to move to.
If the edges are weighted, the neighbour is selected *probabilistically* with
respect to weights of the edges between the current node and its neighbours.
This procedure is repeated for `num_steps` to generate a sequence of *related* nodes.
The [*biased* random walk](https://en.wikipedia.org/wiki/Biased_random_walk_on_a_graph) balances between **breadth-first sampling**
(where only local neighbours are visited) and **depth-first sampling**
(where distant neighbours are visited) by introducing the following two parameters:
1. **Return parameter** (`p`): Controls the likelihood of immediately revisiting
a node in the walk. Setting it to a high value encourages moderate exploration,
while setting it to a low value would keep the walk local.
2. **In-out parameter** (`q`): Allows the search to differentiate
between *inward* and *outward* nodes. Setting it to a high value biases the
random walk towards local nodes, while setting it to a low value biases the walk
to visit nodes which are further away.
"""
def next_step(graph, previous, current, p, q):
neighbors = list(graph.neighbors(current))
weights = []
# Adjust the weights of the edges to the neighbors with respect to p and q.
for neighbor in neighbors:
if neighbor == previous:
# Control the probability to return to the previous node.
weights.append(graph[current][neighbor]["weight"] / p)
elif graph.has_edge(neighbor, previous):
# The probability of visiting a local node.
weights.append(graph[current][neighbor]["weight"])
else:
# Control the probability to move forward.
weights.append(graph[current][neighbor]["weight"] / q)
# Compute the probabilities of visiting each neighbor.
weight_sum = sum(weights)
probabilities = [weight / weight_sum for weight in weights]
# Probabilistically select a neighbor to visit.
next = np.random.choice(neighbors, size=1, p=probabilities)[0]
return next
def random_walk(graph, num_walks, num_steps, p, q):
walks = []
nodes = list(graph.nodes())
# Perform multiple iterations of the random walk.
for walk_iteration in range(num_walks):
random.shuffle(nodes)
for node in tqdm(
nodes,
position=0,
leave=True,
desc=f"Random walks iteration {walk_iteration + 1} of {num_walks}",
):
# Start the walk with a random node from the graph.
walk = [node]
# Randomly walk for num_steps.
while len(walk) < num_steps:
current = walk[-1]
previous = walk[-2] if len(walk) > 1 else None
# Compute the next node to visit.
next = next_step(graph, previous, current, p, q)
walk.append(next)
# Replace node ids (movie ids) in the walk with token ids.
walk = [vocabulary_lookup[token] for token in walk]
# Add the walk to the generated sequence.
walks.append(walk)
return walks
"""
## Generate training data using the biased random walk
You can explore different configurations of `p` and `q` to different results of
related movies.
"""
# Random walk return parameter.
p = 1
# Random walk in-out parameter.
q = 1
# Number of iterations of random walks.
num_walks = 5
# Number of steps of each random walk.
num_steps = 10
walks = random_walk(movies_graph, num_walks, num_steps, p, q)
print("Number of walks generated:", len(walks))
"""
## Generate positive and negative examples
To train a skip-gram model, we use the generated walks to create positive and
negative training examples. Each example includes the following features:
1. `target`: A movie in a walk sequence.
2. `context`: Another movie in a walk sequence.
3. `weight`: How many times these two movies occurred in walk sequences.
4. `label`: The label is 1 if these two movies are samples from the walk sequences,
otherwise (i.e., if randomly sampled) the label is 0.
"""
"""
### Generate examples
"""
def generate_examples(sequences, window_size, num_negative_samples, vocabulary_size):
example_weights = defaultdict(int)
# Iterate over all sequences (walks).
for sequence in tqdm(
sequences,
position=0,
leave=True,
desc=f"Generating positive and negative examples",
):
# Generate positive and negative skip-gram pairs for a sequence (walk).
pairs, labels = keras.preprocessing.sequence.skipgrams(
sequence,
vocabulary_size=vocabulary_size,
window_size=window_size,
negative_samples=num_negative_samples,
)
for idx in range(len(pairs)):
pair = pairs[idx]
label = labels[idx]
target, context = min(pair[0], pair[1]), max(pair[0], pair[1])
if target == context:
continue
entry = (target, context, label)
example_weights[entry] += 1
targets, contexts, labels, weights = [], [], [], []
for entry in example_weights:
weight = example_weights[entry]
target, context, label = entry
targets.append(target)
contexts.append(context)
labels.append(label)
weights.append(weight)
return np.array(targets), np.array(contexts), np.array(labels), np.array(weights)
num_negative_samples = 4
targets, contexts, labels, weights = generate_examples(
sequences=walks,
window_size=num_steps,
num_negative_samples=num_negative_samples,
vocabulary_size=len(vocabulary),
)
"""
Let's display the shapes of the outputs
"""
print(f"Targets shape: {targets.shape}")
print(f"Contexts shape: {contexts.shape}")
print(f"Labels shape: {labels.shape}")
print(f"Weights shape: {weights.shape}")
"""
### Convert the data into `tf.data.Dataset` objects
"""
batch_size = 1024
def create_dataset(targets, contexts, labels, weights, batch_size):
inputs = {
"target": targets,
"context": contexts,
}
dataset = tf.data.Dataset.from_tensor_slices((inputs, labels, weights))
dataset = dataset.shuffle(buffer_size=batch_size * 2)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
dataset = create_dataset(
targets=targets,
contexts=contexts,
labels=labels,
weights=weights,
batch_size=batch_size,
)
"""
## Train the skip-gram model
Our skip-gram is a simple binary classification model that works as follows:
1. An embedding is looked up for the `target` movie.
2. An embedding is looked up for the `context` movie.
3. The dot product is computed between these two embeddings.
4. The result (after a sigmoid activation) is compared to the label.
5. A binary crossentropy loss is used.
"""
learning_rate = 0.001
embedding_dim = 50
num_epochs = 10
"""
### Implement the model
"""
def create_model(vocabulary_size, embedding_dim):
inputs = {
"target": layers.Input(name="target", shape=(), dtype="int32"),
"context": layers.Input(name="context", shape=(), dtype="int32"),
}
# Initialize item embeddings.
embed_item = layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim,
embeddings_initializer="he_normal",
embeddings_regularizer=keras.regularizers.l2(1e-6),
name="item_embeddings",
)
# Lookup embeddings for target.
target_embeddings = embed_item(inputs["target"])
# Lookup embeddings for context.
context_embeddings = embed_item(inputs["context"])
# Compute dot similarity between target and context embeddings.
logits = layers.Dot(axes=1, normalize=False, name="dot_similarity")(
[target_embeddings, context_embeddings]
)
# Create the model.
model = keras.Model(inputs=inputs, outputs=logits)
return model
"""
### Train the model
"""
"""
We instantiate the model and compile it.
"""
model = create_model(len(vocabulary), embedding_dim)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.BinaryCrossentropy(from_logits=True),
)
"""
Let's plot the model.
"""
keras.utils.plot_model(
model,
show_shapes=True,
show_dtype=True,
show_layer_names=True,
)
"""
Now we train the model on the `dataset`.
"""
history = model.fit(dataset, epochs=num_epochs)
"""
Finally we plot the learning history.
"""
plt.plot(history.history["loss"])
plt.ylabel("loss")
plt.xlabel("epoch")
plt.show()
"""
## Analyze the learnt embeddings.
"""
movie_embeddings = model.get_layer("item_embeddings").get_weights()[0]
print("Embeddings shape:", movie_embeddings.shape)
"""
### Find related movies
Define a list with some movies called `query_movies`.
"""
query_movies = [
"Matrix, The (1999)",
"Star Wars: Episode IV - A New Hope (1977)",
"Lion King, The (1994)",
"Terminator 2: Judgment Day (1991)",
"Godfather, The (1972)",
]
"""
Get the embeddings of the movies in `query_movies`.
"""
query_embeddings = []
for movie_title in query_movies:
movieId = get_movie_id_by_title(movie_title)
token_id = vocabulary_lookup[movieId]
movie_embedding = movie_embeddings[token_id]
query_embeddings.append(movie_embedding)
query_embeddings = np.array(query_embeddings)
"""
Compute the [consine similarity](https://en.wikipedia.org/wiki/Cosine_similarity) between the embeddings of `query_movies`
and all the other movies, then pick the top k for each.
"""
similarities = tf.linalg.matmul(
tf.math.l2_normalize(query_embeddings),
tf.math.l2_normalize(movie_embeddings),
transpose_b=True,
)
_, indices = tf.math.top_k(similarities, k=5)
indices = indices.numpy().tolist()
"""
Display the top related movies in `query_movies`.
"""
for idx, title in enumerate(query_movies):
print(title)
print("".rjust(len(title), "-"))
similar_tokens = indices[idx]
for token in similar_tokens:
similar_movieId = vocabulary[token]
similar_title = get_movie_title_by_id(similar_movieId)
print(f"- {similar_title}")
print()
"""
### Visualize the embeddings using the Embedding Projector
"""
import io
out_v = io.open("embeddings.tsv", "w", encoding="utf-8")
out_m = io.open("metadata.tsv", "w", encoding="utf-8")
for idx, movie_id in enumerate(vocabulary[1:]):
movie_title = list(movies[movies.movieId == movie_id].title)[0]
vector = movie_embeddings[idx]
out_v.write("\t".join([str(x) for x in vector]) + "\n")
out_m.write(movie_title + "\n")
out_v.close()
out_m.close()
"""
Download the `embeddings.tsv` and `metadata.tsv` to analyze the obtained embeddings
in the [Embedding Projector](https://projector.tensorflow.org/).
"""
"""
**Example available on HuggingFace**
| Trained Model | Demo |
| :--: | :--: |
| [](https://huggingface.co/keras-io/Node2Vec_MovieLens) | [](https://huggingface.co/spaces/keras-io/Node2Vec_MovieLens) |
"""
|