Spaces:
Running
Running
File size: 24,256 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
"""
Title: Classification with TensorFlow Decision Forests
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2022/01/25
Last modified: 2022/01/25
Description: Using TensorFlow Decision Forests for structured data classification.
Accelerator: GPU
"""
"""
## Introduction
[TensorFlow Decision Forests](https://www.tensorflow.org/decision_forests)
is a collection of state-of-the-art algorithms of Decision Forest models
that are compatible with Keras APIs.
The models include [Random Forests](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/RandomForestModel),
[Gradient Boosted Trees](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel),
and [CART](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/CartModel),
and can be used for regression, classification, and ranking task.
For a beginner's guide to TensorFlow Decision Forests,
please refer to this [tutorial](https://www.tensorflow.org/decision_forests/tutorials/beginner_colab).
This example uses Gradient Boosted Trees model in binary classification of
structured data, and covers the following scenarios:
1. Build a decision forests model by specifying the input feature usage.
2. Implement a custom *Binary Target encoder* as a [Keras Preprocessing layer](https://keras.io/api/layers/preprocessing_layers/)
to encode the categorical features with respect to their target value co-occurrences,
and then use the encoded features to build a decision forests model.
3. Encode the categorical features as [embeddings](https://keras.io/api/layers/core_layers/embedding),
train these embeddings in a simple NN model, and then use the
trained embeddings as inputs to build decision forests model.
This example uses TensorFlow 2.7 or higher,
as well as [TensorFlow Decision Forests](https://www.tensorflow.org/decision_forests),
which you can install using the following command:
```python
pip install -U tensorflow_decision_forests
```
"""
"""
## Setup
"""
import math
import urllib
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_decision_forests as tfdf
"""
## Prepare the data
This example uses the
[United States Census Income Dataset](https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29)
provided by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php).
The task is binary classification to determine whether a person makes over 50K a year.
The dataset includes ~300K instances with 41 input features: 7 numerical features
and 34 categorical features.
First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame.
"""
BASE_PATH = "https://kdd.ics.uci.edu/databases/census-income/census-income"
CSV_HEADER = [
l.decode("utf-8").split(":")[0].replace(" ", "_")
for l in urllib.request.urlopen(f"{BASE_PATH}.names")
if not l.startswith(b"|")
][2:]
CSV_HEADER.append("income_level")
train_data = pd.read_csv(
f"{BASE_PATH}.data.gz",
header=None,
names=CSV_HEADER,
)
test_data = pd.read_csv(
f"{BASE_PATH}.test.gz",
header=None,
names=CSV_HEADER,
)
"""
## Define dataset metadata
Here, we define the metadata of the dataset that will be useful for encoding
the input features with respect to their types.
"""
# Target column name.
TARGET_COLUMN_NAME = "income_level"
# The labels of the target columns.
TARGET_LABELS = [" - 50000.", " 50000+."]
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"wage_per_hour",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"num_persons_worked_for_employer",
"weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
CATEGORICAL_FEATURE_NAMES = [
"class_of_worker",
"detailed_industry_recode",
"detailed_occupation_recode",
"education",
"enroll_in_edu_inst_last_wk",
"marital_stat",
"major_industry_code",
"major_occupation_code",
"race",
"hispanic_origin",
"sex",
"member_of_a_labor_union",
"reason_for_unemployment",
"full_or_part_time_employment_stat",
"tax_filer_stat",
"region_of_previous_residence",
"state_of_previous_residence",
"detailed_household_and_family_stat",
"detailed_household_summary_in_household",
"migration_code-change_in_msa",
"migration_code-change_in_reg",
"migration_code-move_within_reg",
"live_in_this_house_1_year_ago",
"migration_prev_res_in_sunbelt",
"family_members_under_18",
"country_of_birth_father",
"country_of_birth_mother",
"country_of_birth_self",
"citizenship",
"own_business_or_self_employed",
"fill_inc_questionnaire_for_veteran's_admin",
"veterans_benefits",
"year",
]
"""
Now we perform basic data preparation.
"""
def prepare_dataframe(dataframe):
# Convert the target labels from string to integer.
dataframe[TARGET_COLUMN_NAME] = dataframe[TARGET_COLUMN_NAME].map(
TARGET_LABELS.index
)
# Cast the categorical features to string.
for feature_name in CATEGORICAL_FEATURE_NAMES:
dataframe[feature_name] = dataframe[feature_name].astype(str)
prepare_dataframe(train_data)
prepare_dataframe(test_data)
"""
Now let's show the shapes of the training and test dataframes, and display some instances.
"""
print(f"Train data shape: {train_data.shape}")
print(f"Test data shape: {test_data.shape}")
print(train_data.head().T)
"""
## Configure hyperparameters
You can find all the parameters of the Gradient Boosted Tree model in the
[documentation](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel)
"""
# Maximum number of decision trees. The effective number of trained trees can be smaller if early stopping is enabled.
NUM_TREES = 250
# Minimum number of examples in a node.
MIN_EXAMPLES = 6
# Maximum depth of the tree. max_depth=1 means that all trees will be roots.
MAX_DEPTH = 5
# Ratio of the dataset (sampling without replacement) used to train individual trees for the random sampling method.
SUBSAMPLE = 0.65
# Control the sampling of the datasets used to train individual trees.
SAMPLING_METHOD = "RANDOM"
# Ratio of the training dataset used to monitor the training. Require to be >0 if early stopping is enabled.
VALIDATION_RATIO = 0.1
"""
## Implement a training and evaluation procedure
The `run_experiment()` method is responsible loading the train and test datasets,
training a given model, and evaluating the trained model.
Note that when training a Decision Forests model, only one epoch is needed to
read the full dataset. Any extra steps will result in unnecessary slower training.
Therefore, the default `num_epochs=1` is used in the `run_experiment()` method.
"""
def run_experiment(model, train_data, test_data, num_epochs=1, batch_size=None):
train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
train_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME
)
test_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
test_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME
)
model.fit(train_dataset, epochs=num_epochs, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset, verbose=0)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
"""
## Experiment 1: Decision Forests with raw features
"""
"""
### Specify model input feature usages
You can attach semantics to each feature to control how it is used by the model.
If not specified, the semantics are inferred from the representation type.
It is recommended to specify the [feature usages](https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/FeatureUsage)
explicitly to avoid incorrect inferred semantics is incorrect.
For example, a categorical value identifier (integer) will be be inferred as numerical,
while it is semantically categorical.
For numerical features, you can set the `discretized` parameters to the number
of buckets by which the numerical feature should be discretized.
This makes the training faster but may lead to worse models.
"""
def specify_feature_usages():
feature_usages = []
for feature_name in NUMERIC_FEATURE_NAMES:
feature_usage = tfdf.keras.FeatureUsage(
name=feature_name, semantic=tfdf.keras.FeatureSemantic.NUMERICAL
)
feature_usages.append(feature_usage)
for feature_name in CATEGORICAL_FEATURE_NAMES:
feature_usage = tfdf.keras.FeatureUsage(
name=feature_name, semantic=tfdf.keras.FeatureSemantic.CATEGORICAL
)
feature_usages.append(feature_usage)
return feature_usages
"""
### Create a Gradient Boosted Trees model
When compiling a decision forests model, you may only provide extra evaluation metrics.
The loss is specified in the model construction,
and the optimizer is irrelevant to decision forests models.
"""
def create_gbt_model():
# See all the model parameters in https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel
gbt_model = tfdf.keras.GradientBoostedTreesModel(
features=specify_feature_usages(),
exclude_non_specified_features=True,
num_trees=NUM_TREES,
max_depth=MAX_DEPTH,
min_examples=MIN_EXAMPLES,
subsample=SUBSAMPLE,
validation_ratio=VALIDATION_RATIO,
task=tfdf.keras.Task.CLASSIFICATION,
)
gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
return gbt_model
"""
### Train and evaluate the model
"""
gbt_model = create_gbt_model()
run_experiment(gbt_model, train_data, test_data)
"""
### Inspect the model
The `model.summary()` method will display several types of information about
your decision trees model, model type, task, input features, and feature importance.
"""
print(gbt_model.summary())
"""
## Experiment 2: Decision Forests with target encoding
[Target encoding](https://dl.acm.org/doi/10.1145/507533.507538) is a common preprocessing
technique for categorical features that convert them into numerical features.
Using categorical features with high cardinality as-is may lead to overfitting.
Target encoding aims to replace each categorical feature value with one or more
numerical values that represent its co-occurrence with the target labels.
More precisely, given a categorical feature, the binary target encoder in this example
will produce three new numerical features:
1. `positive_frequency`: How many times each feature value occurred with a positive target label.
2. `negative_frequency`: How many times each feature value occurred with a negative target label.
3. `positive_probability`: The probability that the target label is positive,
given the feature value, which is computed as
`positive_frequency / (positive_frequency + negative_frequency + correction)`.
The `correction` term is added in to make the division more stable for rare categorical values.
The default value for `correction` is 1.0.
Note that target encoding is effective with models that cannot automatically
learn dense representations to categorical features, such as decision forests
or kernel methods. If neural network models are used, its recommended to
encode categorical features as embeddings.
"""
"""
### Implement Binary Target Encoder
For simplicity, we assume that the inputs for the `adapt` and `call` methods
are in the expected data types and shapes, so no validation logic is added.
It is recommended to pass the `vocabulary_size` of the categorical feature to the
`BinaryTargetEncoding` constructor. If not specified, it will be computed during
the `adapt()` method execution.
"""
class BinaryTargetEncoding(layers.Layer):
def __init__(self, vocabulary_size=None, correction=1.0, **kwargs):
super().__init__(**kwargs)
self.vocabulary_size = vocabulary_size
self.correction = correction
def adapt(self, data):
# data is expected to be an integer numpy array to a Tensor shape [num_exmples, 2].
# This contains feature values for a given feature in the dataset, and target values.
# Convert the data to a tensor.
data = tf.convert_to_tensor(data)
# Separate the feature values and target values
feature_values = tf.cast(data[:, 0], tf.dtypes.int32)
target_values = tf.cast(data[:, 1], tf.dtypes.bool)
# Compute the vocabulary_size of not specified.
if self.vocabulary_size is None:
self.vocabulary_size = tf.unique(feature_values).y.shape[0]
# Filter the data where the target label is positive.
positive_indices = tf.where(condition=target_values)
positive_feature_values = tf.gather_nd(
params=feature_values, indices=positive_indices
)
# Compute how many times each feature value occurred with a positive target label.
positive_frequency = tf.math.unsorted_segment_sum(
data=tf.ones(
shape=(positive_feature_values.shape[0], 1), dtype=tf.dtypes.float64
),
segment_ids=positive_feature_values,
num_segments=self.vocabulary_size,
)
# Filter the data where the target label is negative.
negative_indices = tf.where(condition=tf.math.logical_not(target_values))
negative_feature_values = tf.gather_nd(
params=feature_values, indices=negative_indices
)
# Compute how many times each feature value occurred with a negative target label.
negative_frequency = tf.math.unsorted_segment_sum(
data=tf.ones(
shape=(negative_feature_values.shape[0], 1), dtype=tf.dtypes.float64
),
segment_ids=negative_feature_values,
num_segments=self.vocabulary_size,
)
# Compute positive probability for the input feature values.
positive_probability = positive_frequency / (
positive_frequency + negative_frequency + self.correction
)
# Concatenate the computed statistics for traget_encoding.
target_encoding_statistics = tf.cast(
tf.concat(
[positive_frequency, negative_frequency, positive_probability], axis=1
),
dtype=tf.dtypes.float32,
)
self.target_encoding_statistics = tf.constant(target_encoding_statistics)
def call(self, inputs):
# inputs is expected to be an integer numpy array to a Tensor shape [num_exmples, 1].
# This includes the feature values for a given feature in the dataset.
# Raise an error if the target encoding statistics are not computed.
if self.target_encoding_statistics == None:
raise ValueError(
f"You need to call the adapt method to compute target encoding statistics."
)
# Convert the inputs to a tensor.
inputs = tf.convert_to_tensor(inputs)
# Cast the inputs int64 a tensor.
inputs = tf.cast(inputs, tf.dtypes.int64)
# Lookup target encoding statistics for the input feature values.
target_encoding_statistics = tf.cast(
tf.gather_nd(self.target_encoding_statistics, inputs),
dtype=tf.dtypes.float32,
)
return target_encoding_statistics
"""
Let's test the binary target encoder
"""
data = tf.constant(
[
[0, 1],
[2, 0],
[0, 1],
[1, 1],
[1, 1],
[2, 0],
[1, 0],
[0, 1],
[2, 1],
[1, 0],
[0, 1],
[2, 0],
[0, 1],
[1, 1],
[1, 1],
[2, 0],
[1, 0],
[0, 1],
[2, 0],
]
)
binary_target_encoder = BinaryTargetEncoding()
binary_target_encoder.adapt(data)
print(binary_target_encoder([[0], [1], [2]]))
"""
### Create model inputs
"""
def create_model_inputs():
inputs = {}
for feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.float32
)
for feature_name in CATEGORICAL_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.string
)
return inputs
"""
### Implement a feature encoding with target encoding
"""
def create_target_encoder():
inputs = create_model_inputs()
target_values = train_data[[TARGET_COLUMN_NAME]].to_numpy()
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
# Get the vocabulary of the categorical feature.
vocabulary = sorted(
[str(value) for value in list(train_data[feature_name].unique())]
)
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
# Convert the string input values into integer indices.
value_indices = lookup(inputs[feature_name])
# Prepare the data to adapt the target encoding.
print("### Adapting target encoding for:", feature_name)
feature_values = train_data[[feature_name]].to_numpy().astype(str)
feature_value_indices = lookup(feature_values)
data = tf.concat([feature_value_indices, target_values], axis=1)
feature_encoder = BinaryTargetEncoding()
feature_encoder.adapt(data)
# Convert the feature value indices to target encoding representations.
encoded_feature = feature_encoder(tf.expand_dims(value_indices, -1))
else:
# Expand the dimensions of the numerical input feature and use it as-is.
encoded_feature = tf.expand_dims(inputs[feature_name], -1)
# Add the encoded feature to the list.
encoded_features.append(encoded_feature)
# Concatenate all the encoded features.
encoded_features = tf.concat(encoded_features, axis=1)
# Create and return a Keras model with encoded features as outputs.
return keras.Model(inputs=inputs, outputs=encoded_features)
"""
### Create a Gradient Boosted Trees model with a preprocessor
In this scenario, we use the target encoding as a preprocessor for the Gradient Boosted Tree model,
and let the model infer semantics of the input features.
"""
def create_gbt_with_preprocessor(preprocessor):
gbt_model = tfdf.keras.GradientBoostedTreesModel(
preprocessing=preprocessor,
num_trees=NUM_TREES,
max_depth=MAX_DEPTH,
min_examples=MIN_EXAMPLES,
subsample=SUBSAMPLE,
validation_ratio=VALIDATION_RATIO,
task=tfdf.keras.Task.CLASSIFICATION,
)
gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
return gbt_model
"""
### Train and evaluate the model
"""
gbt_model = create_gbt_with_preprocessor(create_target_encoder())
run_experiment(gbt_model, train_data, test_data)
"""
## Experiment 3: Decision Forests with trained embeddings
In this scenario, we build an encoder model that codes the categorical
features to embeddings, where the size of the embedding for a given categorical
feature is the square root to the size of its vocabulary.
We train these embeddings in a simple NN model through backpropagation.
After the embedding encoder is trained, we used it as a preprocessor to the
input features of a Gradient Boosted Tree model.
Note that the embeddings and a decision forest model cannot be trained
synergically in one phase, since decision forest models do not train with backpropagation.
Rather, embeddings has to be trained in an initial phase,
and then used as static inputs to the decision forest model.
"""
"""
### Implement feature encoding with embeddings
"""
def create_embedding_encoder(size=None):
inputs = create_model_inputs()
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
# Get the vocabulary of the categorical feature.
vocabulary = sorted(
[str(value) for value in list(train_data[feature_name].unique())]
)
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
# Convert the string input values into integer indices.
value_index = lookup(inputs[feature_name])
# Create an embedding layer with the specified dimensions
vocabulary_size = len(vocabulary)
embedding_size = int(math.sqrt(vocabulary_size))
feature_encoder = layers.Embedding(
input_dim=len(vocabulary), output_dim=embedding_size
)
# Convert the index values to embedding representations.
encoded_feature = feature_encoder(value_index)
else:
# Expand the dimensions of the numerical input feature and use it as-is.
encoded_feature = tf.expand_dims(inputs[feature_name], -1)
# Add the encoded feature to the list.
encoded_features.append(encoded_feature)
# Concatenate all the encoded features.
encoded_features = layers.concatenate(encoded_features, axis=1)
# Apply dropout.
encoded_features = layers.Dropout(rate=0.25)(encoded_features)
# Perform non-linearity projection.
encoded_features = layers.Dense(
units=size if size else encoded_features.shape[-1], activation="gelu"
)(encoded_features)
# Create and return a Keras model with encoded features as outputs.
return keras.Model(inputs=inputs, outputs=encoded_features)
"""
### Build an NN model to train the embeddings
"""
def create_nn_model(encoder):
inputs = create_model_inputs()
embeddings = encoder(inputs)
output = layers.Dense(units=1, activation="sigmoid")(embeddings)
nn_model = keras.Model(inputs=inputs, outputs=output)
nn_model.compile(
optimizer=keras.optimizers.Adam(),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy("accuracy")],
)
return nn_model
embedding_encoder = create_embedding_encoder(size=64)
run_experiment(
create_nn_model(embedding_encoder),
train_data,
test_data,
num_epochs=5,
batch_size=256,
)
"""
### Train and evaluate a Gradient Boosted Tree model with embeddings
"""
gbt_model = create_gbt_with_preprocessor(embedding_encoder)
run_experiment(gbt_model, train_data, test_data)
"""
## Concluding remarks
TensorFlow Decision Forests provide powerful models, especially with structured data.
In our experiments, the Gradient Boosted Tree model achieved 95.79% test accuracy.
When using the target encoding with categorical feature, the same model achieved 95.81% test accuracy.
When pretraining embeddings to be used as inputs to the Gradient Boosted Tree model,
we achieved 95.82% test accuracy.
Decision Forests can be used with Neural Networks, either by
1) using Neural Networks to learn useful representation of the input data,
and then using Decision Forests for the supervised learning task, or by
2) creating an ensemble of both Decision Forests and Neural Network models.
Note that TensorFlow Decision Forests does not (yet) support hardware accelerators.
All training and inference is done on the CPU.
Besides, Decision Forests require a finite dataset that fits in memory
for their training procedures. However, there are diminishing returns
for increasing the size of the dataset, and Decision Forests algorithms
arguably need fewer examples for convergence than large Neural Network models.
"""
|