Spaces:
Running
Running
File size: 18,039 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
"""
Title: Deep Learning for Customer Lifetime Value
Author: [Praveen Hosdrug](https://www.linkedin.com/in/praveenhosdrug/)
Date created: 2024/11/23
Last modified: 2024/11/27
Description: A hybrid deep learning architecture for predicting customer purchase patterns and lifetime value.
Accelerator: None
"""
"""
## Introduction
A hybrid deep learning architecture combining Transformer encoders and LSTM networks
for predicting customer purchase patterns and lifetime value using transaction history.
While many existing review articles focus on classic parametric models and traditional machine learning algorithms
,this implementation leverages recent advancements in Transformer-based models for time series prediction.
The approach handles multi-granularity prediction across different temporal scales.
"""
"""
## Setting up Libraries for the Deep Learning Project
"""
import subprocess
def install_packages(packages):
"""
Install a list of packages using pip.
Args:
packages (list): A list of package names to install.
"""
for package in packages:
subprocess.run(["pip", "install", package], check=True)
"""
## List of Packages to Install
1. uciml: For the purpose of the tutorial; we will be using
the UK Retail [Dataset](https://archive.ics.uci.edu/dataset/352/online+retail)
2. keras_hub: Access to the transformer encoder layer.
"""
packages_to_install = ["ucimlrepo", "keras_hub"]
# Install the packages
install_packages(packages_to_install)
# Core data processing and numerical libraries
import os
os.environ["KERAS_BACKEND"] = "jax"
import keras
import numpy as np
import pandas as pd
from typing import Dict
# Visualization
import matplotlib.pyplot as plt
# Keras imports
from keras import layers
from keras import Model
from keras import ops
from keras_hub.layers import TransformerEncoder
from keras import regularizers
# UK Retail Dataset
from ucimlrepo import fetch_ucirepo
"""
## Preprocessing the UK Retail dataset
"""
def prepare_time_series_data(data):
"""
Preprocess retail transaction data for deep learning.
Args:
data: Raw transaction data containing InvoiceDate, UnitPrice, etc.
Returns:
Processed DataFrame with calculated features
"""
processed_data = data.copy()
# Essential datetime handling for temporal ordering
processed_data["InvoiceDate"] = pd.to_datetime(processed_data["InvoiceDate"])
# Basic business constraints and calculations
processed_data = processed_data[processed_data["UnitPrice"] > 0]
processed_data["Amount"] = processed_data["UnitPrice"] * processed_data["Quantity"]
processed_data["CustomerID"] = processed_data["CustomerID"].fillna(99999.0)
# Handle outliers in Amount using statistical thresholds
q1 = processed_data["Amount"].quantile(0.25)
q3 = processed_data["Amount"].quantile(0.75)
# Define bounds - using 1.5 IQR rule
lower_bound = q1 - 1.5 * (q3 - q1)
upper_bound = q3 + 1.5 * (q3 - q1)
# Filter outliers
processed_data = processed_data[
(processed_data["Amount"] >= lower_bound)
& (processed_data["Amount"] <= upper_bound)
]
return processed_data
# Load Data
online_retail = fetch_ucirepo(id=352)
raw_data = online_retail.data.features
transformed_data = prepare_time_series_data(raw_data)
def prepare_data_for_modeling(
df: pd.DataFrame,
input_sequence_length: int = 6,
output_sequence_length: int = 6,
) -> Dict:
"""
Transform retail data into sequence-to-sequence format with separate
temporal and trend components.
"""
df = df.copy()
# Daily aggregation
daily_purchases = (
df.groupby(["CustomerID", pd.Grouper(key="InvoiceDate", freq="D")])
.agg({"Amount": "sum", "Quantity": "sum", "Country": "first"})
.reset_index()
)
daily_purchases["frequency"] = np.where(daily_purchases["Amount"] > 0, 1, 0)
# Monthly resampling
monthly_purchases = (
daily_purchases.set_index("InvoiceDate")
.groupby("CustomerID")
.resample("M")
.agg(
{"Amount": "sum", "Quantity": "sum", "frequency": "sum", "Country": "first"}
)
.reset_index()
)
# Add cyclical temporal features
def prepare_temporal_features(input_window: pd.DataFrame) -> np.ndarray:
month = input_window["InvoiceDate"].dt.month
month_sin = np.sin(2 * np.pi * month / 12)
month_cos = np.cos(2 * np.pi * month / 12)
is_quarter_start = (month % 3 == 1).astype(int)
temporal_features = np.column_stack(
[
month,
input_window["InvoiceDate"].dt.year,
month_sin,
month_cos,
is_quarter_start,
]
)
return temporal_features
# Prepare trend features with lagged values
def prepare_trend_features(input_window: pd.DataFrame, lag: int = 3) -> np.ndarray:
lagged_data = pd.DataFrame()
for i in range(1, lag + 1):
lagged_data[f"Amount_lag_{i}"] = input_window["Amount"].shift(i)
lagged_data[f"Quantity_lag_{i}"] = input_window["Quantity"].shift(i)
lagged_data[f"frequency_lag_{i}"] = input_window["frequency"].shift(i)
lagged_data = lagged_data.fillna(0)
trend_features = np.column_stack(
[
input_window["Amount"].values,
input_window["Quantity"].values,
input_window["frequency"].values,
lagged_data.values,
]
)
return trend_features
sequence_containers = {
"temporal_sequences": [],
"trend_sequences": [],
"static_features": [],
"output_sequences": [],
}
# Process sequences for each customer
for customer_id, customer_data in monthly_purchases.groupby("CustomerID"):
customer_data = customer_data.sort_values("InvoiceDate")
sequence_ranges = (
len(customer_data) - input_sequence_length - output_sequence_length + 1
)
country = customer_data["Country"].iloc[0]
for i in range(sequence_ranges):
input_window = customer_data.iloc[i : i + input_sequence_length]
output_window = customer_data.iloc[
i
+ input_sequence_length : i
+ input_sequence_length
+ output_sequence_length
]
if (
len(input_window) == input_sequence_length
and len(output_window) == output_sequence_length
):
temporal_features = prepare_temporal_features(input_window)
trend_features = prepare_trend_features(input_window)
sequence_containers["temporal_sequences"].append(temporal_features)
sequence_containers["trend_sequences"].append(trend_features)
sequence_containers["static_features"].append(country)
sequence_containers["output_sequences"].append(
output_window["Amount"].values
)
return {
"temporal_sequences": (
np.array(sequence_containers["temporal_sequences"], dtype=np.float32)
),
"trend_sequences": (
np.array(sequence_containers["trend_sequences"], dtype=np.float32)
),
"static_features": np.array(sequence_containers["static_features"]),
"output_sequences": (
np.array(sequence_containers["output_sequences"], dtype=np.float32)
),
}
# Transform data with input and output sequences into a Output dictionary
output = prepare_data_for_modeling(
df=transformed_data, input_sequence_length=6, output_sequence_length=6
)
"""
## Scaling and Splitting
"""
def robust_scale(data):
"""
Min-Max scaling function since standard deviation is high.
"""
data = np.array(data)
data_min = np.min(data)
data_max = np.max(data)
scaled = (data - data_min) / (data_max - data_min)
return scaled
def create_temporal_splits_with_scaling(
prepared_data: Dict[str, np.ndarray],
test_ratio: float = 0.2,
val_ratio: float = 0.2,
):
total_sequences = len(prepared_data["trend_sequences"])
# Calculate split points
test_size = int(total_sequences * test_ratio)
val_size = int(total_sequences * val_ratio)
train_size = total_sequences - (test_size + val_size)
# Scale trend sequences
trend_shape = prepared_data["trend_sequences"].shape
scaled_trends = np.zeros_like(prepared_data["trend_sequences"])
# Scale each feature independently
for i in range(trend_shape[-1]):
scaled_trends[..., i] = robust_scale(prepared_data["trend_sequences"][..., i])
# Scale output sequences
scaled_outputs = robust_scale(prepared_data["output_sequences"])
# Create splits
train_data = {
"trend_sequences": scaled_trends[:train_size],
"temporal_sequences": prepared_data["temporal_sequences"][:train_size],
"static_features": prepared_data["static_features"][:train_size],
"output_sequences": scaled_outputs[:train_size],
}
val_data = {
"trend_sequences": scaled_trends[train_size : train_size + val_size],
"temporal_sequences": prepared_data["temporal_sequences"][
train_size : train_size + val_size
],
"static_features": prepared_data["static_features"][
train_size : train_size + val_size
],
"output_sequences": scaled_outputs[train_size : train_size + val_size],
}
test_data = {
"trend_sequences": scaled_trends[train_size + val_size :],
"temporal_sequences": prepared_data["temporal_sequences"][
train_size + val_size :
],
"static_features": prepared_data["static_features"][train_size + val_size :],
"output_sequences": scaled_outputs[train_size + val_size :],
}
return train_data, val_data, test_data
# Usage
train_data, val_data, test_data = create_temporal_splits_with_scaling(output)
"""
## Evaluation
"""
def calculate_metrics(y_true, y_pred):
"""
Calculates RMSE, MAE and R²
"""
# Convert inputs to "float32"
y_true = ops.cast(y_true, dtype="float32")
y_pred = ops.cast(y_pred, dtype="float32")
# RMSE
rmse = np.sqrt(np.mean(np.square(y_true - y_pred)))
# R² (coefficient of determination)
ss_res = np.sum(np.square(y_true - y_pred))
ss_tot = np.sum(np.square(y_true - np.mean(y_true)))
r2 = 1 - (ss_res / ss_tot)
return {"mae": np.mean(np.abs(y_true - y_pred)), "rmse": rmse, "r2": r2}
def plot_lorenz_analysis(y_true, y_pred):
"""
Plots Lorenz curves to show distribution of high and low value users
"""
# Convert to numpy arrays and flatten
y_true = np.array(y_true).flatten()
y_pred = np.array(y_pred).flatten()
# Sort values in descending order (for high-value users analysis)
true_sorted = np.sort(-y_true)
pred_sorted = np.sort(-y_pred)
# Calculate cumulative sums
true_cumsum = np.cumsum(true_sorted)
pred_cumsum = np.cumsum(pred_sorted)
# Normalize to percentages
true_cumsum_pct = true_cumsum / true_cumsum[-1]
pred_cumsum_pct = pred_cumsum / pred_cumsum[-1]
# Generate percentiles for x-axis
percentiles = np.linspace(0, 1, len(y_true))
# Calculate Mutual Gini (area between curves)
mutual_gini = np.abs(
np.trapz(true_cumsum_pct, percentiles) - np.trapz(pred_cumsum_pct, percentiles)
)
# Create plot
plt.figure(figsize=(10, 6))
plt.plot(percentiles, true_cumsum_pct, "g-", label="True Values")
plt.plot(percentiles, pred_cumsum_pct, "r-", label="Predicted Values")
plt.xlabel("Cumulative % of Users (Descending Order)")
plt.ylabel("Cumulative % of LTV")
plt.title("Lorenz Curves: True vs Predicted Values")
plt.legend()
plt.grid(True)
print(f"\nMutual Gini: {mutual_gini:.4f} (lower is better)")
plt.show()
return mutual_gini
"""
## Hybrid Transformer / LSTM model architecture
The hybrid nature of this model is particularly significant because it combines RNN's
ability to handle sequential data with Transformer's attention mechanisms for capturing
global patterns across countries and seasonality.
"""
def build_hybrid_model(
input_sequence_length: int,
output_sequence_length: int,
num_countries: int,
d_model: int = 8,
num_heads: int = 4,
):
keras.utils.set_random_seed(seed=42)
# Inputs
temporal_inputs = layers.Input(
shape=(input_sequence_length, 5), name="temporal_inputs"
)
trend_inputs = layers.Input(shape=(input_sequence_length, 12), name="trend_inputs")
country_inputs = layers.Input(
shape=(num_countries,), dtype="int32", name="country_inputs"
)
# Process country features
country_embedding = layers.Embedding(
input_dim=num_countries,
output_dim=d_model,
mask_zero=False,
name="country_embedding",
)(
country_inputs
) # Output shape: (batch_size, 1, d_model)
# Flatten the embedding output
country_embedding = layers.Flatten(name="flatten_country_embedding")(
country_embedding
)
# Repeat the country embedding across timesteps
country_embedding_repeated = layers.RepeatVector(
input_sequence_length, name="repeat_country_embedding"
)(country_embedding)
# Projection of temporal inputs to match Transformer dimensions
temporal_projection = layers.Dense(
d_model, activation="tanh", name="temporal_projection"
)(temporal_inputs)
# Combine all features
combined_features = layers.Concatenate()(
[temporal_projection, country_embedding_repeated]
)
transformer_output = combined_features
for _ in range(3):
transformer_output = TransformerEncoder(
intermediate_dim=16, num_heads=num_heads
)(transformer_output)
lstm_output = layers.LSTM(units=64, name="lstm_trend")(trend_inputs)
transformer_flattened = layers.GlobalAveragePooling1D(name="flatten_transformer")(
transformer_output
)
transformer_flattened = layers.Dense(1, activation="sigmoid")(transformer_flattened)
# Concatenate flattened Transformer output with LSTM output
merged_features = layers.Concatenate(name="concatenate_transformer_lstm")(
[transformer_flattened, lstm_output]
)
# Repeat the merged features to match the output sequence length
decoder_initial = layers.RepeatVector(
output_sequence_length, name="repeat_merged_features"
)(merged_features)
decoder_lstm = layers.LSTM(
units=64,
return_sequences=True,
recurrent_regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4),
)(decoder_initial)
# Output Dense layer
output = layers.Dense(units=1, activation="linear", name="output_dense")(
decoder_lstm
)
model = Model(
inputs=[temporal_inputs, trend_inputs, country_inputs], outputs=output
)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=0.001),
loss="mse",
metrics=["mse"],
)
return model
# Create the hybrid model
model = build_hybrid_model(
input_sequence_length=6,
output_sequence_length=6,
num_countries=len(np.unique(train_data["static_features"])) + 1,
d_model=8,
num_heads=4,
)
# Configure StringLookup
label_encoder = layers.StringLookup(output_mode="one_hot", num_oov_indices=1)
# Adapt and encode
label_encoder.adapt(train_data["static_features"])
train_static_encoded = label_encoder(train_data["static_features"])
val_static_encoded = label_encoder(val_data["static_features"])
test_static_encoded = label_encoder(test_data["static_features"])
# Convert sequences with proper type casting
x_train_seq = np.asarray(train_data["trend_sequences"]).astype(np.float32)
x_val_seq = np.asarray(val_data["trend_sequences"]).astype(np.float32)
x_train_temporal = np.asarray(train_data["temporal_sequences"]).astype(np.float32)
x_val_temporal = np.asarray(val_data["temporal_sequences"]).astype(np.float32)
train_outputs = np.asarray(train_data["output_sequences"]).astype(np.float32)
val_outputs = np.asarray(val_data["output_sequences"]).astype(np.float32)
test_output = np.asarray(test_data["output_sequences"]).astype(np.float32)
# Training setup
keras.utils.set_random_seed(seed=42)
history = model.fit(
[x_train_temporal, x_train_seq, train_static_encoded],
train_outputs,
validation_data=(
[x_val_temporal, x_val_seq, val_static_encoded],
val_data["output_sequences"].astype(np.float32),
),
epochs=20,
batch_size=30,
)
# Make predictions
predictions = model.predict(
[
test_data["temporal_sequences"].astype(np.float32),
test_data["trend_sequences"].astype(np.float32),
test_static_encoded,
]
)
# Calculate the predictions
predictions = np.squeeze(predictions)
# Calculate basic metrics
hybrid_metrics = calculate_metrics(test_data["output_sequences"], predictions)
# Plot Lorenz curves and get Mutual Gini
hybrid_mutual_gini = plot_lorenz_analysis(test_data["output_sequences"], predictions)
"""
## Conclusion
While LSTMs excel at sequence to sequence learning as demonstrated through the work of Sutskever, I., Vinyals,
O., & Le, Q. V. (2014) Sequence to sequence learning with neural networks.
The hybrid approach here enhances this foundation. The addition of attention mechanisms allows the model to adaptively
focus on relevant temporal/geographical patterns while maintaining the LSTM's inherent strengths in sequence learning.
This combination has proven especially effective for handling both periodic patterns and special events in time
series forecasting from Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021).
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting.
"""
|