File size: 15,152 Bytes
9ce984a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
"""
Title: Classification with Neural Decision Forests
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/01/15
Last modified: 2021/01/15
Description: How to train differentiable decision trees for end-to-end learning in deep neural networks.
Accelerator: GPU
"""

"""
## Introduction

This example provides an implementation of the
[Deep Neural Decision Forest](https://ieeexplore.ieee.org/document/7410529)
model introduced by P. Kontschieder et al. for structured data classification.
It demonstrates how to build a stochastic and differentiable decision tree model,
train it end-to-end, and unify decision trees with deep representation learning.

## The dataset

This example uses the
[United States Census Income Dataset](https://archive.ics.uci.edu/ml/datasets/census+income)
provided by the
[UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php).
The task is binary classification
to predict whether a person is likely to be making over USD 50,000 a year.

The dataset includes 48,842 instances with 14 input features (such as age, work class, education, occupation, and so on): 5 numerical features
and 9 categorical features.
"""

"""
## Setup
"""

import keras
from keras import layers
from keras.layers import StringLookup
from keras import ops


from tensorflow import data as tf_data
import numpy as np
import pandas as pd

import math


"""
## Prepare the data
"""

CSV_HEADER = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education_num",
    "marital_status",
    "occupation",
    "relationship",
    "race",
    "gender",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
    "native_country",
    "income_bracket",
]

train_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
)
train_data = pd.read_csv(train_data_url, header=None, names=CSV_HEADER)

test_data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
)
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)

print(f"Train dataset shape: {train_data.shape}")
print(f"Test dataset shape: {test_data.shape}")

"""
Remove the first record (because it is not a valid data example) and a trailing
'dot' in the class labels.
"""

test_data = test_data[1:]
test_data.income_bracket = test_data.income_bracket.apply(
    lambda value: value.replace(".", "")
)

"""
We store the training and test data splits locally as CSV files.
"""

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)

"""
## Define dataset metadata

Here, we define the metadata of the dataset that will be useful for reading and parsing
and encoding input features.
"""

# A list of the numerical feature names.
NUMERIC_FEATURE_NAMES = [
    "age",
    "education_num",
    "capital_gain",
    "capital_loss",
    "hours_per_week",
]
# A dictionary of the categorical features and their vocabulary.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "workclass": sorted(list(train_data["workclass"].unique())),
    "education": sorted(list(train_data["education"].unique())),
    "marital_status": sorted(list(train_data["marital_status"].unique())),
    "occupation": sorted(list(train_data["occupation"].unique())),
    "relationship": sorted(list(train_data["relationship"].unique())),
    "race": sorted(list(train_data["race"].unique())),
    "gender": sorted(list(train_data["gender"].unique())),
    "native_country": sorted(list(train_data["native_country"].unique())),
}
# A list of the columns to ignore from the dataset.
IGNORE_COLUMN_NAMES = ["fnlwgt"]
# A list of the categorical feature names.
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
# A list of all the input features.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
# A list of column default values for each feature.
COLUMN_DEFAULTS = [
    [0.0] if feature_name in NUMERIC_FEATURE_NAMES + IGNORE_COLUMN_NAMES else ["NA"]
    for feature_name in CSV_HEADER
]
# The name of the target feature.
TARGET_FEATURE_NAME = "income_bracket"
# A list of the labels of the target features.
TARGET_LABELS = [" <=50K", " >50K"]

"""
## Create `tf_data.Dataset` objects for training and validation

We create an input function to read and parse the file, and convert features and labels
into a [`tf_data.Dataset`](https://www.tensorflow.org/guide/datasets)
for training and validation. We also preprocess the input by mapping the target label
to an index.
"""


target_label_lookup = StringLookup(
    vocabulary=TARGET_LABELS, mask_token=None, num_oov_indices=0
)


lookup_dict = {}
for feature_name in CATEGORICAL_FEATURE_NAMES:
    vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
    # Create a lookup to convert a string values to an integer indices.
    # Since we are not using a mask token, nor expecting any out of vocabulary
    # (oov) token, we set mask_token to None and num_oov_indices to 0.
    lookup = StringLookup(vocabulary=vocabulary, mask_token=None, num_oov_indices=0)
    lookup_dict[feature_name] = lookup


def encode_categorical(batch_x, batch_y):
    for feature_name in CATEGORICAL_FEATURE_NAMES:
        batch_x[feature_name] = lookup_dict[feature_name](batch_x[feature_name])

    return batch_x, batch_y


def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
    dataset = (
        tf_data.experimental.make_csv_dataset(
            csv_file_path,
            batch_size=batch_size,
            column_names=CSV_HEADER,
            column_defaults=COLUMN_DEFAULTS,
            label_name=TARGET_FEATURE_NAME,
            num_epochs=1,
            header=False,
            na_value="?",
            shuffle=shuffle,
        )
        .map(lambda features, target: (features, target_label_lookup(target)))
        .map(encode_categorical)
    )

    return dataset.cache()


"""
## Create model inputs
"""


def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="int32"
            )
    return inputs


"""
## Encode input features
"""


def encode_inputs(inputs):
    encoded_features = []
    for feature_name in inputs:
        if feature_name in CATEGORICAL_FEATURE_NAMES:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert a string values to an integer indices.
            # Since we are not using a mask token, nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and num_oov_indices to 0.
            value_index = inputs[feature_name]
            embedding_dims = int(math.sqrt(lookup.vocabulary_size()))
            # Create an embedding layer with the specified dimensions.
            embedding = layers.Embedding(
                input_dim=lookup.vocabulary_size(), output_dim=embedding_dims
            )
            # Convert the index values to embedding representations.
            encoded_feature = embedding(value_index)
        else:
            # Use the numerical features as-is.
            encoded_feature = inputs[feature_name]
            if inputs[feature_name].shape[-1] is None:
                encoded_feature = keras.ops.expand_dims(encoded_feature, -1)

        encoded_features.append(encoded_feature)

    encoded_features = layers.concatenate(encoded_features)
    return encoded_features


"""
## Deep Neural Decision Tree

A neural decision tree model has two sets of weights to learn. The first set is `pi`,
which represents the probability distribution of the classes in the tree leaves.
The second set is the weights of the routing layer `decision_fn`, which represents the probability
of going to each leave. The forward pass of the model works as follows:

1. The model expects input `features` as a single vector encoding all the features of an instance
in the batch. This vector can be generated from a Convolution Neural Network (CNN) applied to images
or dense transformations applied to structured data features.
2. The model first applies a `used_features_mask` to randomly select a subset of input features to use.
3. Then, the model computes the probabilities (`mu`) for the input instances to reach the tree leaves
by iteratively performing a *stochastic* routing throughout the tree levels.
4. Finally, the probabilities of reaching the leaves are combined by the class probabilities at the
leaves to produce the final `outputs`.
"""


class NeuralDecisionTree(keras.Model):
    def __init__(self, depth, num_features, used_features_rate, num_classes):
        super().__init__()
        self.depth = depth
        self.num_leaves = 2**depth
        self.num_classes = num_classes

        # Create a mask for the randomly selected features.
        num_used_features = int(num_features * used_features_rate)
        one_hot = np.eye(num_features)
        sampled_feature_indices = np.random.choice(
            np.arange(num_features), num_used_features, replace=False
        )
        self.used_features_mask = ops.convert_to_tensor(
            one_hot[sampled_feature_indices], dtype="float32"
        )

        # Initialize the weights of the classes in leaves.
        self.pi = self.add_weight(
            initializer="random_normal",
            shape=[self.num_leaves, self.num_classes],
            dtype="float32",
            trainable=True,
        )

        # Initialize the stochastic routing layer.
        self.decision_fn = layers.Dense(
            units=self.num_leaves, activation="sigmoid", name="decision"
        )

    def call(self, features):
        batch_size = ops.shape(features)[0]

        # Apply the feature mask to the input features.
        features = ops.matmul(
            features, ops.transpose(self.used_features_mask)
        )  # [batch_size, num_used_features]
        # Compute the routing probabilities.
        decisions = ops.expand_dims(
            self.decision_fn(features), axis=2
        )  # [batch_size, num_leaves, 1]
        # Concatenate the routing probabilities with their complements.
        decisions = layers.concatenate(
            [decisions, 1 - decisions], axis=2
        )  # [batch_size, num_leaves, 2]

        mu = ops.ones([batch_size, 1, 1])

        begin_idx = 1
        end_idx = 2
        # Traverse the tree in breadth-first order.
        for level in range(self.depth):
            mu = ops.reshape(mu, [batch_size, -1, 1])  # [batch_size, 2 ** level, 1]
            mu = ops.tile(mu, (1, 1, 2))  # [batch_size, 2 ** level, 2]
            level_decisions = decisions[
                :, begin_idx:end_idx, :
            ]  # [batch_size, 2 ** level, 2]
            mu = mu * level_decisions  # [batch_size, 2**level, 2]
            begin_idx = end_idx
            end_idx = begin_idx + 2 ** (level + 1)

        mu = ops.reshape(mu, [batch_size, self.num_leaves])  # [batch_size, num_leaves]
        probabilities = keras.activations.softmax(self.pi)  # [num_leaves, num_classes]
        outputs = ops.matmul(mu, probabilities)  # [batch_size, num_classes]
        return outputs


"""
## Deep Neural Decision Forest

The neural decision forest model consists of a set of neural decision trees that are
trained simultaneously. The output of the forest model is the average outputs of its trees.
"""


class NeuralDecisionForest(keras.Model):
    def __init__(self, num_trees, depth, num_features, used_features_rate, num_classes):
        super().__init__()
        self.ensemble = []
        # Initialize the ensemble by adding NeuralDecisionTree instances.
        # Each tree will have its own randomly selected input features to use.
        for _ in range(num_trees):
            self.ensemble.append(
                NeuralDecisionTree(depth, num_features, used_features_rate, num_classes)
            )

    def call(self, inputs):
        # Initialize the outputs: a [batch_size, num_classes] matrix of zeros.
        batch_size = ops.shape(inputs)[0]
        outputs = ops.zeros([batch_size, num_classes])

        # Aggregate the outputs of trees in the ensemble.
        for tree in self.ensemble:
            outputs += tree(inputs)
        # Divide the outputs by the ensemble size to get the average.
        outputs /= len(self.ensemble)
        return outputs


"""
Finally, let's set up the code that will train and evaluate the model.
"""

learning_rate = 0.01
batch_size = 265
num_epochs = 10


def run_experiment(model):
    model.compile(
        optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
        loss=keras.losses.SparseCategoricalCrossentropy(),
        metrics=[keras.metrics.SparseCategoricalAccuracy()],
    )

    print("Start training the model...")
    train_dataset = get_dataset_from_csv(
        train_data_file, shuffle=True, batch_size=batch_size
    )

    model.fit(train_dataset, epochs=num_epochs)
    print("Model training finished")

    print("Evaluating the model on the test data...")
    test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)

    _, accuracy = model.evaluate(test_dataset)
    print(f"Test accuracy: {round(accuracy * 100, 2)}%")


"""
## Experiment 1: train a decision tree model

In this experiment, we train a single neural decision tree model
where we use all input features.
"""

num_trees = 10
depth = 10
used_features_rate = 1.0
num_classes = len(TARGET_LABELS)


def create_tree_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)
    features = layers.BatchNormalization()(features)
    num_features = features.shape[1]

    tree = NeuralDecisionTree(depth, num_features, used_features_rate, num_classes)

    outputs = tree(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


tree_model = create_tree_model()
run_experiment(tree_model)


"""
## Experiment 2: train a forest model

In this experiment, we train a neural decision forest with `num_trees` trees
where each tree uses randomly selected 50% of the input features. You can control the number
of features to be used in each tree by setting the `used_features_rate` variable.
In addition, we set the depth to 5 instead of 10 compared to the previous experiment.
"""

num_trees = 25
depth = 5
used_features_rate = 0.5


def create_forest_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)
    features = layers.BatchNormalization()(features)
    num_features = features.shape[1]

    forest_model = NeuralDecisionForest(
        num_trees, depth, num_features, used_features_rate, num_classes
    )

    outputs = forest_model(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


forest_model = create_forest_model()

run_experiment(forest_model)