Spaces:
Running
Running
File size: 19,203 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
"""
Title: Structured data learning with TabTransformer
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2022/01/18
Last modified: 2022/01/18
Description: Using contextual embeddings for structured data classification.
Accelerator: GPU
"""
"""
## Introduction
This example demonstrates how to do structured data classification using
[TabTransformer](https://arxiv.org/abs/2012.06678), a deep tabular data modeling
architecture for supervised and semi-supervised learning.
The TabTransformer is built upon self-attention based Transformers.
The Transformer layers transform the embeddings of categorical features
into robust contextual embeddings to achieve higher predictive accuracy.
## Setup
"""
import keras
from keras import layers
from keras import ops
import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import matplotlib.pyplot as plt
from functools import partial
"""
## Prepare the data
This example uses the
[United States Census Income Dataset](https://archive.ics.uci.edu/ml/datasets/census+income)
provided by the
[UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php).
The task is binary classification
to predict whether a person is likely to be making over USD 50,000 a year.
The dataset includes 48,842 instances with 14 input features: 5 numerical features and 9 categorical features.
First, let's load the dataset from the UCI Machine Learning Repository into a Pandas
DataFrame:
"""
CSV_HEADER = [
"age",
"workclass",
"fnlwgt",
"education",
"education_num",
"marital_status",
"occupation",
"relationship",
"race",
"gender",
"capital_gain",
"capital_loss",
"hours_per_week",
"native_country",
"income_bracket",
]
train_data_url = (
"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
)
train_data = pd.read_csv(train_data_url, header=None, names=CSV_HEADER)
test_data_url = (
"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
)
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)
print(f"Train dataset shape: {train_data.shape}")
print(f"Test dataset shape: {test_data.shape}")
"""
Remove the first record (because it is not a valid data example) and a trailing 'dot' in the class labels.
"""
test_data = test_data[1:]
test_data.income_bracket = test_data.income_bracket.apply(
lambda value: value.replace(".", "")
)
"""
Now we store the training and test data in separate CSV files.
"""
train_data_file = "train_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)
"""
## Define dataset metadata
Here, we define the metadata of the dataset that will be useful for reading and parsing
the data into input features, and encoding the input features with respect to their types.
"""
# A list of the numerical feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"education_num",
"capital_gain",
"capital_loss",
"hours_per_week",
]
# A dictionary of the categorical features and their vocabulary.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
"workclass": sorted(list(train_data["workclass"].unique())),
"education": sorted(list(train_data["education"].unique())),
"marital_status": sorted(list(train_data["marital_status"].unique())),
"occupation": sorted(list(train_data["occupation"].unique())),
"relationship": sorted(list(train_data["relationship"].unique())),
"race": sorted(list(train_data["race"].unique())),
"gender": sorted(list(train_data["gender"].unique())),
"native_country": sorted(list(train_data["native_country"].unique())),
}
# Name of the column to be used as instances weight.
WEIGHT_COLUMN_NAME = "fnlwgt"
# A list of the categorical feature names.
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())
# A list of all the input features.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
# A list of column default values for each feature.
COLUMN_DEFAULTS = [
[0.0] if feature_name in NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME] else ["NA"]
for feature_name in CSV_HEADER
]
# The name of the target feature.
TARGET_FEATURE_NAME = "income_bracket"
# A list of the labels of the target features.
TARGET_LABELS = [" <=50K", " >50K"]
"""
## Configure the hyperparameters
The hyperparameters includes model architecture and training configurations.
"""
LEARNING_RATE = 0.001
WEIGHT_DECAY = 0.0001
DROPOUT_RATE = 0.2
BATCH_SIZE = 265
NUM_EPOCHS = 15
NUM_TRANSFORMER_BLOCKS = 3 # Number of transformer blocks.
NUM_HEADS = 4 # Number of attention heads.
EMBEDDING_DIMS = 16 # Embedding dimensions of the categorical features.
MLP_HIDDEN_UNITS_FACTORS = [
2,
1,
] # MLP hidden layer units, as factors of the number of inputs.
NUM_MLP_BLOCKS = 2 # Number of MLP blocks in the baseline model.
"""
## Implement data reading pipeline
We define an input function that reads and parses the file, then converts features
and labels into a[`tf.data.Dataset`](https://www.tensorflow.org/guide/datasets)
for training or evaluation.
"""
target_label_lookup = layers.StringLookup(
vocabulary=TARGET_LABELS, mask_token=None, num_oov_indices=0
)
def prepare_example(features, target):
target_index = target_label_lookup(target)
weights = features.pop(WEIGHT_COLUMN_NAME)
return features, target_index, weights
lookup_dict = {}
for feature_name in CATEGORICAL_FEATURE_NAMES:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert a string values to an integer indices.
# Since we are not using a mask token, nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
lookup_dict[feature_name] = lookup
def encode_categorical(batch_x, batch_y, weights):
for feature_name in CATEGORICAL_FEATURE_NAMES:
batch_x[feature_name] = lookup_dict[feature_name](batch_x[feature_name])
return batch_x, batch_y, weights
def get_dataset_from_csv(csv_file_path, batch_size=128, shuffle=False):
dataset = (
tf_data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=False,
na_value="?",
shuffle=shuffle,
)
.map(prepare_example, num_parallel_calls=tf_data.AUTOTUNE, deterministic=False)
.map(encode_categorical)
)
return dataset.cache()
"""
## Implement a training and evaluation procedure
"""
def run_experiment(
model,
train_data_file,
test_data_file,
num_epochs,
learning_rate,
weight_decay,
batch_size,
):
optimizer = keras.optimizers.AdamW(
learning_rate=learning_rate, weight_decay=weight_decay
)
model.compile(
optimizer=optimizer,
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)
validation_dataset = get_dataset_from_csv(test_data_file, batch_size)
print("Start training the model...")
history = model.fit(
train_dataset, epochs=num_epochs, validation_data=validation_dataset
)
print("Model training finished")
_, accuracy = model.evaluate(validation_dataset, verbose=0)
print(f"Validation accuracy: {round(accuracy * 100, 2)}%")
return history
"""
## Create model inputs
Now, define the inputs for the models as a dictionary, where the key is the feature name,
and the value is a `keras.layers.Input` tensor with the corresponding feature shape
and data type.
"""
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="float32"
)
else:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype="int32"
)
return inputs
"""
## Encode features
The `encode_inputs` method returns `encoded_categorical_feature_list` and `numerical_feature_list`.
We encode the categorical features as embeddings, using a fixed `embedding_dims` for all the features,
regardless their vocabulary sizes. This is required for the Transformer model.
"""
def encode_inputs(inputs, embedding_dims):
encoded_categorical_feature_list = []
numerical_feature_list = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert a string values to an integer indices.
# Since we are not using a mask token, nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
# Convert the string input values into integer indices.
# Create an embedding layer with the specified dimensions.
embedding = layers.Embedding(
input_dim=len(vocabulary), output_dim=embedding_dims
)
# Convert the index values to embedding representations.
encoded_categorical_feature = embedding(inputs[feature_name])
encoded_categorical_feature_list.append(encoded_categorical_feature)
else:
# Use the numerical features as-is.
numerical_feature = ops.expand_dims(inputs[feature_name], -1)
numerical_feature_list.append(numerical_feature)
return encoded_categorical_feature_list, numerical_feature_list
"""
## Implement an MLP block
"""
def create_mlp(hidden_units, dropout_rate, activation, normalization_layer, name=None):
mlp_layers = []
for units in hidden_units:
mlp_layers.append(normalization_layer())
mlp_layers.append(layers.Dense(units, activation=activation))
mlp_layers.append(layers.Dropout(dropout_rate))
return keras.Sequential(mlp_layers, name=name)
"""
## Experiment 1: a baseline model
In the first experiment, we create a simple multi-layer feed-forward network.
"""
def create_baseline_model(
embedding_dims, num_mlp_blocks, mlp_hidden_units_factors, dropout_rate
):
# Create model inputs.
inputs = create_model_inputs()
# encode features.
encoded_categorical_feature_list, numerical_feature_list = encode_inputs(
inputs, embedding_dims
)
# Concatenate all features.
features = layers.concatenate(
encoded_categorical_feature_list + numerical_feature_list
)
# Compute Feedforward layer units.
feedforward_units = [features.shape[-1]]
# Create several feedforwad layers with skip connections.
for layer_idx in range(num_mlp_blocks):
features = create_mlp(
hidden_units=feedforward_units,
dropout_rate=dropout_rate,
activation=keras.activations.gelu,
normalization_layer=layers.LayerNormalization,
name=f"feedforward_{layer_idx}",
)(features)
# Compute MLP hidden_units.
mlp_hidden_units = [
factor * features.shape[-1] for factor in mlp_hidden_units_factors
]
# Create final MLP.
features = create_mlp(
hidden_units=mlp_hidden_units,
dropout_rate=dropout_rate,
activation=keras.activations.selu,
normalization_layer=layers.BatchNormalization,
name="MLP",
)(features)
# Add a sigmoid as a binary classifer.
outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
baseline_model = create_baseline_model(
embedding_dims=EMBEDDING_DIMS,
num_mlp_blocks=NUM_MLP_BLOCKS,
mlp_hidden_units_factors=MLP_HIDDEN_UNITS_FACTORS,
dropout_rate=DROPOUT_RATE,
)
print("Total model weights:", baseline_model.count_params())
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")
"""
Let's train and evaluate the baseline model:
"""
history = run_experiment(
model=baseline_model,
train_data_file=train_data_file,
test_data_file=test_data_file,
num_epochs=NUM_EPOCHS,
learning_rate=LEARNING_RATE,
weight_decay=WEIGHT_DECAY,
batch_size=BATCH_SIZE,
)
"""
The baseline linear model achieves ~81% validation accuracy.
"""
"""
## Experiment 2: TabTransformer
The TabTransformer architecture works as follows:
1. All the categorical features are encoded as embeddings, using the same `embedding_dims`.
This means that each value in each categorical feature will have its own embedding vector.
2. A column embedding, one embedding vector for each categorical feature, is added (point-wise) to the categorical feature embedding.
3. The embedded categorical features are fed into a stack of Transformer blocks.
Each Transformer block consists of a multi-head self-attention layer followed by a feed-forward layer.
3. The outputs of the final Transformer layer, which are the *contextual embeddings* of the categorical features,
are concatenated with the input numerical features, and fed into a final MLP block.
4. A `softmax` classifer is applied at the end of the model.
The [paper](https://arxiv.org/abs/2012.06678) discusses both addition and concatenation of the column embedding in the
*Appendix: Experiment and Model Details* section.
The architecture of TabTransformer is shown below, as presented in the paper.
<img src="https://raw.githubusercontent.com/keras-team/keras-io/master/examples/structured_data/img/tabtransformer/tabtransformer.png" width="500"/>
"""
def create_tabtransformer_classifier(
num_transformer_blocks,
num_heads,
embedding_dims,
mlp_hidden_units_factors,
dropout_rate,
use_column_embedding=False,
):
# Create model inputs.
inputs = create_model_inputs()
# encode features.
encoded_categorical_feature_list, numerical_feature_list = encode_inputs(
inputs, embedding_dims
)
# Stack categorical feature embeddings for the Tansformer.
encoded_categorical_features = ops.stack(encoded_categorical_feature_list, axis=1)
# Concatenate numerical features.
numerical_features = layers.concatenate(numerical_feature_list)
# Add column embedding to categorical feature embeddings.
if use_column_embedding:
num_columns = encoded_categorical_features.shape[1]
column_embedding = layers.Embedding(
input_dim=num_columns, output_dim=embedding_dims
)
column_indices = ops.arange(start=0, stop=num_columns, step=1)
encoded_categorical_features = encoded_categorical_features + column_embedding(
column_indices
)
# Create multiple layers of the Transformer block.
for block_idx in range(num_transformer_blocks):
# Create a multi-head attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads,
key_dim=embedding_dims,
dropout=dropout_rate,
name=f"multihead_attention_{block_idx}",
)(encoded_categorical_features, encoded_categorical_features)
# Skip connection 1.
x = layers.Add(name=f"skip_connection1_{block_idx}")(
[attention_output, encoded_categorical_features]
)
# Layer normalization 1.
x = layers.LayerNormalization(name=f"layer_norm1_{block_idx}", epsilon=1e-6)(x)
# Feedforward.
feedforward_output = create_mlp(
hidden_units=[embedding_dims],
dropout_rate=dropout_rate,
activation=keras.activations.gelu,
normalization_layer=partial(
layers.LayerNormalization, epsilon=1e-6
), # using partial to provide keyword arguments before initialization
name=f"feedforward_{block_idx}",
)(x)
# Skip connection 2.
x = layers.Add(name=f"skip_connection2_{block_idx}")([feedforward_output, x])
# Layer normalization 2.
encoded_categorical_features = layers.LayerNormalization(
name=f"layer_norm2_{block_idx}", epsilon=1e-6
)(x)
# Flatten the "contextualized" embeddings of the categorical features.
categorical_features = layers.Flatten()(encoded_categorical_features)
# Apply layer normalization to the numerical features.
numerical_features = layers.LayerNormalization(epsilon=1e-6)(numerical_features)
# Prepare the input for the final MLP block.
features = layers.concatenate([categorical_features, numerical_features])
# Compute MLP hidden_units.
mlp_hidden_units = [
factor * features.shape[-1] for factor in mlp_hidden_units_factors
]
# Create final MLP.
features = create_mlp(
hidden_units=mlp_hidden_units,
dropout_rate=dropout_rate,
activation=keras.activations.selu,
normalization_layer=layers.BatchNormalization,
name="MLP",
)(features)
# Add a sigmoid as a binary classifer.
outputs = layers.Dense(units=1, activation="sigmoid", name="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
tabtransformer_model = create_tabtransformer_classifier(
num_transformer_blocks=NUM_TRANSFORMER_BLOCKS,
num_heads=NUM_HEADS,
embedding_dims=EMBEDDING_DIMS,
mlp_hidden_units_factors=MLP_HIDDEN_UNITS_FACTORS,
dropout_rate=DROPOUT_RATE,
)
print("Total model weights:", tabtransformer_model.count_params())
keras.utils.plot_model(tabtransformer_model, show_shapes=True, rankdir="LR")
"""
Let's train and evaluate the TabTransformer model:
"""
history = run_experiment(
model=tabtransformer_model,
train_data_file=train_data_file,
test_data_file=test_data_file,
num_epochs=NUM_EPOCHS,
learning_rate=LEARNING_RATE,
weight_decay=WEIGHT_DECAY,
batch_size=BATCH_SIZE,
)
"""
The TabTransformer model achieves ~85% validation accuracy.
Note that, with the default parameter configurations, both the baseline and the TabTransformer
have similar number of trainable weights: 109,895 and 87,745 respectively, and both use the same training hyperparameters.
"""
"""
## Conclusion
TabTransformer significantly outperforms MLP and recent
deep networks for tabular data while matching the performance of tree-based ensemble models.
TabTransformer can be learned in end-to-end supervised training using labeled examples.
For a scenario where there are a few labeled examples and a large number of unlabeled
examples, a pre-training procedure can be employed to train the Transformer layers using unlabeled data.
This is followed by fine-tuning of the pre-trained Transformer layers along with
the top MLP layer using the labeled data.
"""
|