Spaces:
Running
Running
File size: 19,468 Bytes
c08309c f8693d4 1d67f6d fff7b35 9313878 4d79a4c fff7b35 1455c2a ca7be06 9313878 2dcb1f2 fff7b35 2960fc5 ca7be06 1d67f6d 9313878 d33d284 2e3627a 6e0d909 1d67f6d 57a11ff f8693d4 fff7b35 6e0d909 fff7b35 6e0d909 aa593cf 9313878 2960fc5 6e0d909 aa593cf 9313878 2960fc5 6e0d909 aa593cf 9313878 6e0d909 2960fc5 6e0d909 aa593cf 6e0d909 aa593cf 6e0d909 fff7b35 2960fc5 57a11ff fff7b35 2960fc5 fff7b35 2960fc5 f8693d4 2960fc5 9313878 f8693d4 4d79a4c 762edf7 4d79a4c 762edf7 6e0d909 4d79a4c f8693d4 762edf7 6e0d909 762edf7 6e0d909 762edf7 9313878 762edf7 4d79a4c 762edf7 2960fc5 2dcb1f2 4d79a4c 9313878 e364ce0 1d67f6d e364ce0 762edf7 e364ce0 762edf7 e364ce0 4d79a4c 762edf7 c08309c 762edf7 4d79a4c e364ce0 762edf7 c8b2c9e e364ce0 762edf7 e364ce0 dfb43ff 762edf7 e364ce0 2dcb1f2 e364ce0 d33d284 762edf7 2e3627a e364ce0 1801360 e364ce0 d33d284 e364ce0 d33d284 e364ce0 c8b2c9e 4d79a4c dfb43ff 4d79a4c e364ce0 2960fc5 9313878 2960fc5 762edf7 d824005 9313878 87a36dc 9313878 1d67f6d 87a36dc e56fce6 fff7b35 9313878 4d79a4c 87a36dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# agent_logic.py (Fixed: OpenAI and Nebius Initialization + Robust Unpacking)
import asyncio
from typing import AsyncGenerator, Dict, Optional, List, Tuple
import json
import os
import uuid
import datetime
import google.generativeai as genai
from anthropic import AsyncAnthropic
from openai import AsyncOpenAI
import re
from personas import PERSONAS_DATA
import config
from utils import load_prompt
from mcp_servers import AgentCalibrator, BusinessSolutionEvaluator, get_llm_response
from self_correction import SelfCorrector
CLASSIFIER_SYSTEM_PROMPT = load_prompt(config.PROMPT_FILES["classifier"])
HOMOGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_homogeneous"])
HETEROGENEOUS_MANAGER_PROMPT = load_prompt(config.PROMPT_FILES["manager_heterogeneous"])
METRIC_MAPPING = {
"novelty": "Novelty",
"usefulness": "Usefulness_Feasibility",
"feasibility": "Usefulness_Feasibility",
"usefulness_feasibility": "Usefulness_Feasibility",
"usefulness/feasibility": "Usefulness_Feasibility",
"flexibility": "Flexibility",
"elaboration": "Elaboration",
"cultural_appropriateness": "Cultural_Appropriateness",
"cultural_sensitivity": "Cultural_Appropriateness",
"cultural appropriateness": "Cultural_Appropriateness",
"cultural appropriateness/sensitivity": "Cultural_Appropriateness"
}
# --- HELPER CLASSES ---
class Baseline_Single_Agent:
def __init__(self, api_clients: dict):
self.gemini_client = api_clients.get("Gemini")
async def solve(self, problem: str, persona_prompt: str) -> Tuple[str, dict]:
if not self.gemini_client: raise ValueError("Single_Agent requires a Google/Gemini client.")
return await get_llm_response("Gemini", self.gemini_client, persona_prompt, problem)
class Baseline_Static_Homogeneous:
def __init__(self, api_clients: dict):
self.api_clients = {name: client for name, client in api_clients.items() if client}
self.gemini_client = api_clients.get("Gemini")
async def solve(self, problem: str, persona_prompt: str) -> Tuple[str, List[dict]]:
if not self.gemini_client: raise ValueError("Homogeneous_Team requires a Google/Gemini client.")
system_prompt = persona_prompt
user_prompt = f"As an expert Implementer, generate a detailed plan for this problem: {problem}"
tasks = [get_llm_response(llm, client, system_prompt, user_prompt) for llm, client in self.api_clients.items()]
results = await asyncio.gather(*tasks)
responses = [r[0] for r in results]
usages = [r[1] for r in results]
manager_system_prompt = HOMOGENEOUS_MANAGER_PROMPT
reports_str = "\n\n".join(f"Report from Team Member {i+1}:\n{resp}" for i, resp in enumerate(responses))
manager_user_prompt = f"Original Problem: {problem}\n\n{reports_str}\n\nPlease synthesize these reports into one final, comprehensive solution."
final_text, final_usage = await get_llm_response("Gemini", self.gemini_client, manager_system_prompt, manager_user_prompt)
usages.append(final_usage)
return final_text, usages
class Baseline_Static_Heterogeneous:
def __init__(self, api_clients: dict):
self.api_clients = api_clients
self.gemini_client = api_clients.get("Gemini")
async def solve(self, problem: str, team_plan: dict) -> Tuple[str, List[dict]]:
if not self.gemini_client: raise ValueError("Heterogeneous_Team requires a Google/Gemini client.")
tasks = []
for role, config_data in team_plan.items():
llm_name = config_data["llm"]
persona_key = config_data["persona"]
client = self.api_clients.get(llm_name)
if not client:
llm_name = "Gemini"
client = self.gemini_client
system_prompt = PERSONAS_DATA[persona_key]["description"]
user_prompt = f"As the team's '{role}', provide your unique perspective on how to solve this problem: {problem}"
tasks.append(get_llm_response(llm_name, client, system_prompt, user_prompt))
results = await asyncio.gather(*tasks)
responses = [r[0] for r in results]
usages = [r[1] for r in results]
manager_system_prompt = HETEROGENEOUS_MANAGER_PROMPT
reports_str = "\n\n".join(f"Report from {team_plan[role]['llm']} (as {role}):\n{resp}" for (role, resp) in zip(team_plan.keys(), responses))
manager_user_prompt = f"Original Problem: {problem}\n\n{reports_str}\n\nPlease synthesize these specialist reports into one final, comprehensive solution."
final_text, final_usage = await get_llm_response("Gemini", self.gemini_client, manager_system_prompt, manager_user_prompt)
usages.append(final_usage)
return final_text, usages
# --- MAIN AGENT ---
class StrategicSelectorAgent:
def __init__(self, api_keys: Dict[str, Optional[str]]):
self.api_keys = api_keys
# Initialize potential clients including new providers
self.api_clients = {
"Gemini": None,
"Anthropic": None,
"SambaNova": None,
"OpenAI": None,
"Nebius": None
}
# --- INIT GEMINI ---
if api_keys.get("google") and api_keys["google"].strip():
try:
genai.configure(api_key=api_keys["google"])
self.api_clients["Gemini"] = genai.GenerativeModel(config.MODELS["Gemini"]["default"])
except Exception as e: print(f"Warning: Gemini init failed: {e}")
# --- INIT ANTHROPIC ---
if api_keys.get("anthropic") and api_keys["anthropic"].strip():
try:
self.api_clients["Anthropic"] = AsyncAnthropic(api_key=api_keys["anthropic"])
except Exception as e: print(f"Warning: Anthropic init failed: {e}")
# --- INIT SAMBANOVA ---
if api_keys.get("sambanova") and api_keys["sambanova"].strip():
try:
self.api_clients["SambaNova"] = AsyncOpenAI(
api_key=api_keys["sambanova"],
base_url=os.getenv("SAMBANOVA_BASE_URL", "https://api.sambanova.ai/v1")
)
except Exception as e: print(f"Warning: SambaNova init failed: {e}")
# --- INIT OPENAI (NEW) ---
if api_keys.get("openai") and api_keys["openai"].strip():
try:
self.api_clients["OpenAI"] = AsyncOpenAI(api_key=api_keys["openai"])
except Exception as e: print(f"Warning: OpenAI init failed: {e}")
# --- INIT NEBIUS (NEW) ---
if api_keys.get("nebius") and api_keys["nebius"].strip():
try:
self.api_clients["Nebius"] = AsyncOpenAI(
api_key=api_keys["nebius"],
base_url="https://api.studio.nebius.ai/v1/"
)
except Exception as e: print(f"Warning: Nebius init failed: {e}")
if not self.api_clients["Gemini"]:
raise ValueError("Google API Key is required.")
self.evaluator = BusinessSolutionEvaluator(self.api_clients["Gemini"])
self.calibrator = AgentCalibrator(self.api_clients, self.evaluator)
self.corrector = SelfCorrector(threshold=3.0)
self.single_agent = Baseline_Single_Agent(self.api_clients)
self.homo_team = Baseline_Static_Homogeneous(self.api_clients)
self.hetero_team = Baseline_Static_Heterogeneous(self.api_clients)
self.current_team_plan = None
if "ERROR:" in CLASSIFIER_SYSTEM_PROMPT: raise FileNotFoundError(CLASSIFIER_SYSTEM_PROMPT)
async def solve(self, problem: str) -> AsyncGenerator[str, None]:
run_id = str(uuid.uuid4())[:8]
# Initialize Financial Tracking
financial_report = {
"calibration_cost": 0.0,
"generation_cost": 0.0,
"total_cost": 0.0,
"usage_breakdown": []
}
debug_log = {
"run_id": run_id,
"timestamp": datetime.datetime.now().isoformat(),
"problem": problem,
"classification": "",
"trace": [],
"financial_report": financial_report
}
# Helper to add usage and calculate cost
def add_usage(usage_list):
if isinstance(usage_list, dict): usage_list = [usage_list]
current_step_cost = 0.0
for u in usage_list:
financial_report["usage_breakdown"].append(u)
# Lookup pricing
model_name = u.get("model", "Gemini")
# Safely get pricing with default fallbacks
pricing = config.PRICING.get(model_name, {"input": 0, "output": 0})
# Calculate Cost
cost = (u.get("input", 0) / 1_000_000 * pricing["input"]) + \
(u.get("output", 0) / 1_000_000 * pricing["output"])
financial_report["total_cost"] += cost
current_step_cost += cost
return current_step_cost
try:
yield "Classifying problem archetype (live)..."
classification, cls_usage = await get_llm_response("Gemini", self.api_clients["Gemini"], CLASSIFIER_SYSTEM_PROMPT, problem)
classification = classification.strip().replace("\"", "")
yield f"Diagnosis: {classification}"
add_usage(cls_usage)
debug_log["classification"] = classification
if "Error generating response" in classification:
yield "Classifier failed. Defaulting to Single Agent."
classification = "Direct_Procedure"
solution_draft = ""
v_fitness_json = {}
scores = {}
# --- MAIN LOOP ---
for i in range(2):
current_problem = problem
if i > 0:
yield f"--- (Loop {i}) Score is too low. Initiating Self-Correction... ---"
correction_prompt_text = self.corrector.get_correction_plan(v_fitness_json)
yield f"Diagnosis: {correction_prompt_text.splitlines()[3].strip()}"
current_problem = f"{problem}\n\n{correction_prompt_text}"
debug_log["trace"].append({
"step_type": "correction_plan",
"loop_index": i,
"prompt": correction_prompt_text
})
# --- DEPLOY ---
default_persona = PERSONAS_DATA[config.DEFAULT_PERSONA_KEY]["description"]
current_usages = []
if classification == "Direct_Procedure" or classification == "Holistic_Abstract_Reasoning":
if i == 0: yield "Deploying: Baseline Single Agent (Simplicity Hypothesis)..."
solution_draft, u = await self.single_agent.solve(current_problem, default_persona)
current_usages.append(u)
elif classification == "Local_Geometric_Procedural":
if i == 0: yield "Deploying: Static Homogeneous Team (Expert Anomaly)..."
solution_draft, u_list = await self.homo_team.solve(current_problem, default_persona)
current_usages.extend(u_list)
elif classification == "Cognitive_Labyrinth":
if i == 0:
yield "Deploying: Static Heterogeneous Team (Cognitive Diversity)..."
# --- UNPACK 4 VALUES FROM CALIBRATOR ---
# Safely call and unpack, providing debugging if it fails
calib_result = await self.calibrator.calibrate_team(current_problem)
if calib_result is None:
raise ValueError("CRITICAL ERROR: calibrate_team returned None. Please verify mcp_servers.py on the server.")
if len(calib_result) != 4:
# Fallback logic if server has old mcp_servers.py (e.g. 2 or 3 values)
if len(calib_result) == 2:
team_plan, calibration_errors = calib_result
calib_details, calib_usage = [], [] # Defaults
elif len(calib_result) == 3:
team_plan, calibration_errors, calib_details = calib_result
calib_usage = [] # Default
else:
raise ValueError(f"Calibrator returned {len(calib_result)} values, expected 4.")
else:
team_plan, calibration_errors, calib_details, calib_usage = calib_result
# Track Calibration Cost explicitly
calib_step_cost = add_usage(calib_usage)
financial_report["calibration_cost"] += calib_step_cost
debug_log["trace"].append({
"step_type": "calibration",
"details": calib_details,
"errors": calibration_errors,
"selected_plan": team_plan
})
if calibration_errors:
yield "--- CALIBRATION WARNINGS ---"
for err in calibration_errors: yield err
yield "-----------------------------"
yield f"Calibration complete. Best Team: {json.dumps({k: v['llm'] for k, v in team_plan.items()})}"
self.current_team_plan = team_plan
solution_draft, u_list = await self.hetero_team.solve(current_problem, self.current_team_plan)
current_usages.extend(u_list)
else:
if i == 0: yield f"Diagnosis '{classification}' is unknown. Defaulting to Single Agent."
solution_draft, u = await self.single_agent.solve(current_problem, default_persona)
current_usages.append(u)
add_usage(current_usages)
if "Error generating response" in solution_draft:
raise Exception(f"The specialist team failed to generate a solution. Error: {solution_draft}")
yield f"Draft solution received: '{solution_draft[:60]}...'"
# --- EVALUATE ---
yield "Evaluating draft (live)..."
v_fitness_json, eval_usage = await self.evaluator.evaluate(current_problem, solution_draft)
add_usage(eval_usage)
if isinstance(v_fitness_json, list):
if len(v_fitness_json) > 0 and isinstance(v_fitness_json[0], dict):
v_fitness_json = v_fitness_json[0]
else:
v_fitness_json = {}
normalized_fitness = {}
if isinstance(v_fitness_json, dict):
for k, v in v_fitness_json.items():
canonical_key = None
clean_k = k.lower().strip()
if clean_k in METRIC_MAPPING: canonical_key = METRIC_MAPPING[clean_k]
if not canonical_key: continue
if isinstance(v, dict):
score_value = v.get('score')
justification_value = v.get('justification', str(v))
elif isinstance(v, list) and len(v) > 0 and isinstance(v[0], dict):
score_value = v[0].get('score')
justification_value = v[0].get('justification', str(v[0]))
else:
score_value = v
justification_value = "Score extracted directly."
if isinstance(score_value, str):
try:
match = re.search(r'\d+', score_value)
score_value = int(match.group()) if match else 0
except:
score_value = 0
try:
score_value = int(score_value)
except (ValueError, TypeError):
score_value = 0
normalized_fitness[canonical_key] = {'score': score_value, 'justification': justification_value}
else:
normalized_fitness = {k: {'score': 0, 'justification': "Invalid JSON structure"} for k in ["Novelty", "Usefulness_Feasibility", "Flexibility", "Elaboration", "Cultural_Appropriateness"]}
v_fitness_json = normalized_fitness
scores = {k: v.get('score', 0) for k, v in v_fitness_json.items()}
yield f"Evaluation Score: {scores}"
debug_log["trace"].append({
"step_type": "attempt",
"loop_index": i,
"draft": solution_draft,
"scores": scores,
"full_evaluation": v_fitness_json
})
if scores.get('Novelty', 0) <= 1:
yield f"⚠️ Low Score Detected. Reason: {v_fitness_json.get('Novelty', {}).get('justification', 'Unknown')}"
if self.corrector.is_good_enough(scores):
yield "--- Solution approved by self-corrector. ---"
break
elif i == 1:
yield "--- Max correction loops reached. Accepting best effort. ---"
# --- FINALIZE ---
financial_report["generation_cost"] = financial_report["total_cost"] - financial_report["calibration_cost"]
debug_log["financial_report"] = financial_report
await asyncio.sleep(0.5)
solution_draft_json_safe = json.dumps(solution_draft)
debug_log_json_safe = json.dumps(debug_log)
yield f"FINAL: {{\"text\": {solution_draft_json_safe}, \"audio\": null, \"log\": {debug_log_json_safe}}}"
except Exception as e:
error_msg = f"An error occurred in the agent's solve loop: {e}"
print(error_msg)
debug_log["error"] = str(e)
yield error_msg
finally:
try:
os.makedirs("logs", exist_ok=True)
log_path = f"logs/run_{run_id}.json"
with open(log_path, "w", encoding="utf-8") as f:
json.dump(debug_log, f, indent=2)
print(f"Detailed execution log saved to {log_path}")
except Exception as log_err:
print(f"Failed to save log: {log_err}") |